Skip to main content

Massive MIMO for Future Vehicular Networks: Compressed-Sensing and Low-Complexity Detection Schemes (Invited Paper)

  • Conference paper
  • First Online:
Wireless Internet (WiCON 2017)

Included in the following conference series:

  • 888 Accesses

Abstract

The fast development of the fifth generation (5G) mobile communications system has brought a bright prospect of the next generation vehicular networks. Especially, a typical application in future vehicular networks is to deploy intelligent transportation systems (ITS), aiming to providing high level user experience on the move. To support the deployment of ITS, high rate communications and energy efficiency, low-latency transmission and low-complexity detection schemes are highly demanded. Massive multiple-input multiple-output (MIMO) has been seen as a promising candidate for the demand. The architecture that many vehicles access the roadside infrastructure is quite suitable for the employment of massive MIMO as large-scale antennas can be deployed at the roadside unit. However, the challenges along with massive MIMO is low complexity and efficient data detection schemes. In this paper, we provide an overview of low-complexity detection schemes in massive MIMO, and summarize the challenges and possible solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mecklenbrauker, C., Molisch, A., Karedal, J., Tufvesson, F., Paier, A., Bernado, L., Zemen, T., Klemp, O., Czink, N.: Vehicular channel characterization and its implications for wireless system design and performance. IEEE Proc. 99(7), 1189–1212 (2011)

    Article  Google Scholar 

  2. Viriyasitavat, W., Boban, M., Tsai, H., Vasilakos, A.: Vehicular communications: survey and challenges of channel and propagation models. IEEE Veh. Technol. Mag. 10(2), 55–66 (2015)

    Article  Google Scholar 

  3. Su, Z., Hui, Y., Yang, Q.: The next generation vehicular networks: a content-centric framework. IEEE Wirel. Commun. Mag. 24(1), 60–66 (2017)

    Article  Google Scholar 

  4. Li, P., Zhang, T., Huang, C., Chen, X., Fu, B.: RSU-assisted geocast in vehicular ad hoc networks. IEEE Wirel. Commun. Mag. 24(1), 53–59 (2017)

    Article  Google Scholar 

  5. Zhang, R., Zhong, Z., Zhao, J., Li, B., Wang, K.: Channel measurement and packet-level modeling for V2I spatial multiplexing uplinks using massive MIMO. IEEE Trans. Veh. Technol. 65(10), 7831–7843 (2016)

    Article  Google Scholar 

  6. Choi, J., Va, V., Gonzalez-Prelcic, N., Daniels, R., Bhat, C., Heath, R.: Millimeter wave vehicular communication to support massive automotive sensing. IEEE Commun. Mag. 54(12), 160–167 (2016)

    Article  Google Scholar 

  7. Marzetta, T.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  8. Ngo, H., Larsson, E., Marzetta, T.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  9. Zhang, Y., Venkatesan, R., Dobre, O.A., Li, C.: Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme. IEEE Trans. Wirel. Commun. 15(4), 2590–2603 (2016)

    Article  Google Scholar 

  10. Yang, S., Hanzo, L.: Fifty years of MIMO detection: the road to large-scale MIMOs. IEEE Commun. Surv. Tutor. 17(4), 1941–1988 (2015)

    Article  Google Scholar 

  11. Jiang, F., Zhang, Y., Li, C.: A new SQRD-based soft interference cancelation scheme in multi-user MIMO SC-FDMA system. IEEE Commun. Lett. 21(4), 821–824 (2017)

    Article  Google Scholar 

  12. Li, C., Jiang, F., Meng, C., Gong, Z.: A new turbo equalizer conditioned on estimated channel for MIMO MMSE receiver. IEEE Commun. Lett. 21(4), 957–960 (2017)

    Article  Google Scholar 

  13. Choi, J., Shim, B.: New approach for massive MIMO detection using sparse error recovery. In: IEEE Proceedings of the GLOBECOM, Austin, TX, USA, pp. 3754–3759 (2014)

    Google Scholar 

  14. Peng, X., Wu, W., Sun, J., Liu, Y.: Sparsity-boosted detection for large MIMO systems. IEEE Commun. Lett. 19(2), 191–194 (2015)

    Article  Google Scholar 

  15. Choi, J., Shim, B., Ding, Y., Rao, B., Kim, D.: Compressed sensing for wireless communications: useful tips and tricks. IEEE Commun. Surv. Tutor. 19(3), 1527–1550 (2017)

    Article  Google Scholar 

  16. Wu, M., Yin, B., Wang, G., Dick, C., Cavallaro, J., Studer, C.: Large-scale MIMO detection for 3GPP LTE: algorithms and FPGA implementations. IEEE J. Sel. Top. Signal Process. 8(5), 916–929 (2014)

    Article  Google Scholar 

  17. Jiang, F., Li, C., Gong, Z., Su, R.: Stair matrix and its applications to massive MIMO uplink detection. Submitted to IEEE Trans. Commun. (2017, under review)

    Google Scholar 

  18. Jiang, F., Li, C., Gong, Z.: Block Gauss-Seidel method based detection in vehicle-to-infrastructure massive MIMO uplink. In: IEEE Proceedings of the GLOBECOM (2017)

    Google Scholar 

  19. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  20. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  21. Needell, D., Tropp, J.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  22. Wang, J., Kwon, S., Shim, B.: Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2012)

    Article  MathSciNet  Google Scholar 

  23. Kwon, S., Wang, J., Shim, B.: Multipath matching pursuit. IEEE Trans. Inf. Theory 60(5), 2986–3001 (2014)

    Article  MathSciNet  Google Scholar 

  24. Maleki, A., Donoho, D.: Optimally tuned iterative reconstruction algorithms for compressed sensing. IEEE J. Sel. Top. Signal Process. 4(2), 330–341 (2010)

    Article  Google Scholar 

  25. Blumensath, T., Davies, M.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  26. Bayati, M., Montanari, A.: The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Trans. Inf. Theory 57, 764–785 (2011)

    Article  MathSciNet  Google Scholar 

  27. Tang, C., Liu, C., Yuan, L., Xing, Z.: High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO. IEEE Commun. Lett. 20(3), 490–493 (2016)

    Article  Google Scholar 

  28. Dai, L., Gao, X., Su, X., Han, S., Wang, Z.: Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multiuser large-scale MIMO systems. IEEE Trans. Veh. Technol. 64(10), 4839–4845 (2015)

    Article  Google Scholar 

  29. Qin, X., Yan, Z., He, G.: A near-optimal detection scheme based on joint steepest descent and Jacobi method for uplink massive MIMO systems. IEEE Commun. Lett. 20(2), 276–279 (2016)

    Article  Google Scholar 

  30. Jiang, F., Li, C., Gong, Z.: A low complexity soft-output data detection scheme based on Jacobi method for massive MIMO uplink transmission. In: 2017 IEEE International Conference on Communication, pp. 1–5. IEEE Press, Paris (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, F., Li, C., Gong, Z., Zhang, Y. (2018). Massive MIMO for Future Vehicular Networks: Compressed-Sensing and Low-Complexity Detection Schemes (Invited Paper). In: Li, C., Mao, S. (eds) Wireless Internet. WiCON 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-90802-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90802-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90801-4

  • Online ISBN: 978-3-319-90802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics