Skip to main content

Rotational Tunneling in Stick NMR Spectra of Solids

  • Chapter
  • First Online:
  • 713 Accesses

Abstract

In NMR spectroscopy of condensed phases, the space coordinates of the magnetic nuclei are generally treated classically and only the spin degrees of freedom are quantized. This approach can fail for atomic groupings of a periodic structure whose topomers differ by permuted labels of light nuclei such as protons or deuterons, and are separated by low energy barriers. The spectra of such systems can show apparent proton-proton or deuteron-deuteron couplings resulting from spin-space correlations of the nuclear space and spin degrees of freedom, imposed by the symmetrization postulate of quantum mechanics. In this chapter, the stick spectra of such systems will be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 06 February 2019

    In the original version of the book, belated corrections from author for Chapters 2–7, 9 and Appendix C have been incorporated. The correction book has been updated with the changes.

References

  1. M. Dracinsky, P. Hodgkinson, Chem. Eur. J. 20, 2201 (2013)

    Google Scholar 

  2. S. Mamone, M. Concistre, E. Carignani, B. Meier, A. Krachmalnicoff, O.G. Johannessen, X.G. Lei, Y.J. Li, M. Denning, M. Carravetta, K. Goh, A.J. Horsewill, R.J. Whitby, M.H. Levitt, J. Chem. Phys. 140 (2014), art. no. 194306

    Google Scholar 

  3. F. Reif, E.M. Purcell, Phys. Rev. 91, 631 (1953)

    Article  ADS  Google Scholar 

  4. K. Tomita, Phys. Rev. 89, 429 (1953)

    Article  ADS  Google Scholar 

  5. J.G. Powles, A.S. Gutowsky, J. Chem. Phys. 23, 1692 (1955)

    Google Scholar 

  6. S. Clough, J. Phys. C 1, 265 (1968)

    Google Scholar 

  7. F. Apaydin, S. Clough, J. Phys. C 1, 932 (1968)

    Google Scholar 

  8. (a) C. Mottley, T.B. Cobb, C.S. Johnson, J. Chem. Phys. 55, 5823 (1971); (b) C.S. Johnson, C. Mottley, Chem. Phys. Lett. 22, 430 (1973); (c) C. Mottley, C.S. Johnson, J. Chem. Phys. 61, 1078 (1974)

    Google Scholar 

  9. M. Prager, A. Heidemann, Chem. Rev. 97, 2933 (1997)

    Article  Google Scholar 

  10. A. Horsewill, Prog. Nucl. Magn. Reson. Spectrosc. 35, 359 (1999)

    Google Scholar 

  11. S. Clough, in Introductory Essays, vol. 13, NMR Basic Principles and Progress, ed. by M.M. Pintar (Springer, Berlin, 1976), p. 113

    Google Scholar 

  12. E.W. Weisstein, Mathieu Function, MathWorld–A Wolfram Web Resource; 30 Jan 2018, 15:00 UTC. http://mathworld.wolfram.com/MathieuFunction.html

  13. C. Herring, in Magnetism, vol. IIB, ed. by G.T. Rado, H. Suhl (Academic Press, New York, 1966), p. 2

    Google Scholar 

  14. A. Hueller, Phys. Rev. B 16, 1844 (1977)

    Article  ADS  Google Scholar 

  15. E.M. Hiller, R.A. Harris, J. Chem. Phys. 99, 7652 (1993)

    Google Scholar 

  16. Z. Olejniczak, Z. Lalowicz, T. Schmidt, H. Zimmermann, U. Haeberlen, H. Schmitt, J. Chem. Phys. 116, 10343 (2002)

    Google Scholar 

  17. W. Press, Single Particle Rotations in Molecular Crystals, vol. 92, Springer Tracts on Modern Physics (Springer, Berlin, 1981)

    Google Scholar 

  18. P.S. Allen, J. Phys. C 7, L22 (1974)

    Google Scholar 

  19. S. Szymański, J. Chem. Phys. 104, 8216 (1996); 106(E), 3430 (1997)

    Google Scholar 

  20. C. Scheurer, R. Wiedenbruch, R. Meyer, R.R. Ernst, D.M. Heinekey, J. Chem. Phys. 106, 1 (1997)

    Google Scholar 

  21. S. Szymański, J. Chem. Phys. 111, 288 (1999)

    Google Scholar 

  22. T. Ratajczyk, S. Szymański, J. Chem. Phys. 123 (2005), art. no. 204509

    Google Scholar 

  23. P. Bernatowicz, A. Shkurenko, A. Osior, B. Kamieński, S. Szymański, Phys. Chem. Chem. Phys. 17, 28866 (2015)

    Article  Google Scholar 

  24. P. Gutsche, M. Rinsdorf, H. Zimmermann, H. Schmitt, U. Haeberlen, Solid State Nucl. Magn. Reson. 25, 227 (2004)

    Google Scholar 

  25. P. Gutsche, H. Schmitt, U. Haeberlen, T. Ratajczyk, S. Szymański, ChemPhysChem 7, 886 (2006)

    Article  Google Scholar 

  26. A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z.T. Lalowicz, Z. Naturforsch, A 50, 95 (1995)

    Google Scholar 

  27. A. Osior, P. Kalicki, B. Kamieński, S. Szymański, P. Bernatowicz, A. Shkurenko, J. Chem. Phys. 146 (2017), art. no. 104504

    Google Scholar 

Further Reading

  1. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, A Course of Theoretical Physics, vol. 3, 3rd edn. (Butterworth-Heinemann, Oxford, 1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Szymański .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szymański, S., Bernatowicz, P. (2018). Rotational Tunneling in Stick NMR Spectra of Solids. In: Classical and Quantum Molecular Dynamics in NMR Spectra. Springer, Cham. https://doi.org/10.1007/978-3-319-90781-9_7

Download citation

Publish with us

Policies and ethics