Skip to main content

Heat Shock Proteins in Oxidative and Nitrosative Stress

  • Chapter
  • First Online:
Heat Shock Proteins and Stress

Part of the book series: Heat Shock Proteins ((HESP,volume 15))

Abstract

Multiple human pathologies have been attributed to oxidative/nitrosative stress. Stress occurs when the production of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) exceeds the antioxidant capacity. Heat shock proteins (HSP) are closely related families of constitutively expressed and stress-induced cellular proteins that protect cellular homeostasis against heat and other stress stimuli. Oxidative stress is considered a key mediator of HSP induction. This chapter reviews the role of Hsp70 in different disorders associated with oxidative/nitrosative stress with reference to factors affecting Hsp70 gene expression, the role of proteasomes, the anti-apoptotic and anti-inflammatory effects and the relation between heat stress and oxidative stress. Moreover, we address the overexpression of other HSP such as Hsp32, 27, 40 and 60 following oxidative/nitrosative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ag NP:

Silver nanoparticles

ARE:

Antioxidant responsive element

HBA:

Heat shock protein 90-binding agent

HO-1:

Heme oxygenase-1

HSE:

Heat shock elements

HSF:

Heat shock factor

HSP:

Heat shock proteins

I/R:

Ischemia/reperfusion

iNOS or NOS II:

Inducible nitric-oxide synthase

NF-κB:

Nuclear factor kappa beta

NO:

Nitric oxide

NOS I/PKG:

Nitric-oxide synthase I/ protein kinase G

ONHs:

Optic nerve heads

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RVLM:

Rostral ventrolateral medulla

TNF:

Tumor necrosis factor

References

  • Acharya A, Das I, Chandhok D, Saha T (2010) Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxidative Med Cell Longev 3:23–34

    Article  Google Scholar 

  • Adachi M, Liu Y, Fujii K, Calderwood SK, Nakai A, Imai K, Shinomura Y (2009) Oxidative stress impairs the heat stress response and delays unfolded protein recovery. PLoS One 4:e7719

    Article  Google Scholar 

  • Adrie C, Richter C, Bachelet M, Banzet N, François D, Dinh-Xuan AT, Dhainaut JF, Polla BS, Richard MJ (2000) Contrasting effects of NO and peroxynitrites on HSP70 expression and apoptosis in human monocytes. Am J Phys Cell Physiol 279:C452–C460

    Article  CAS  Google Scholar 

  • Alice LY, Fuchshofer R, Birke M, Kampik A, Bloemendal H, Welge-Lüssen U (2008) Oxidative stress and TGF-β2 increase heat shock protein 27 expression in human optic nerve head astrocytes. Invest Ophthalmol Vis Sci 49:5403–5411

    Article  Google Scholar 

  • Altan Ö, Pabuçcuoğlu A, Altan A, Konyalioğlu S, Bayraktar H (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br Poult Sci 44:545–550

    Article  CAS  Google Scholar 

  • Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. In: Molecular aspects of the stress response: chaperones, membranes and networks. Springer, New York, pp 14–26

    Chapter  Google Scholar 

  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–422

    Article  CAS  Google Scholar 

  • Asea A (2005) Stress proteins and initiation of immune response: chaperokine activity of hsp72. Exerc Immunol Rev 11:34

    PubMed  PubMed Central  Google Scholar 

  • Aucoin MM, Barhoumi ROLA, Kochevar DT, Granger HJ, Burghardt RC (1995) Oxidative injury of coronary venular endothelial cells depletes intracellular glutathione and induces HSP 70 mRNA. Am J Physiol Heart Circ Physiol 268:H1651–H1658

    Article  CAS  Google Scholar 

  • Beckmann RP, Mizzen LA, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    Article  CAS  Google Scholar 

  • Blunt BC, Creek AT, Henderson DC, Hofmann PA (2007) H2O2 activation of HSP 25/27 protects desmin from calpain proteolysis in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 293:H1518–H1525

    Article  CAS  Google Scholar 

  • Bruce JL, Price BD, Coleman CN, Calderwood SK (1993) Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins. Cancer Res 53:12–15

    CAS  PubMed  Google Scholar 

  • Burdon RH, Gill VM, Rice-Evans C (1987) Oxidative stress and heat shock protein induction in human cells. Free Radic Res Commun 3:129–139

    Article  CAS  Google Scholar 

  • Calabrese V, Copani A, Testa D, Ravagna A, Spadaro F, Tendi E, Nicoletti VG, Giuffrida Stella AM (2000a) Nitric oxide synthase induction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J Neurosci Res 60:613–622

    Article  CAS  Google Scholar 

  • Calabrese V, Testa G, Ravagna A, Bates TE, Stella AMG (2000b) HSP70 induction in the brain following ethanol administration in the rat: regulation by glutathione redox state. Biochem Biophys Res Commun 269:397–400

    Article  CAS  Google Scholar 

  • Calabrese V, Scapagnini G, Colombrita C, Ravagna A, Pennisi G, Stella AG, Galli F, Butterfield DA (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25:437–444

    Article  CAS  Google Scholar 

  • Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AG, Butterfield DA (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233:145–162

    Article  CAS  Google Scholar 

  • Chan JY, Ou CC, Wang LL, Chan SH (2004) Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear factor-κB activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation 110:3560–3566

    Article  CAS  Google Scholar 

  • Ciechanover A, Orian A, Schwartz AL (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem 77:40–51

    Article  Google Scholar 

  • Ding Q, Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77:1010–1017

    Article  CAS  Google Scholar 

  • Donati YR, Slosman DO, Polla BS (1990) Oxidative injury and the heat shock response. Biochem Pharmacol 40:2571–2577

    Article  CAS  Google Scholar 

  • Eu JP, Liu L, Zeng M, Stamler JS (2000) An apoptotic model for nitrosative stress. Biochemistry 39:1040–1047

    Article  CAS  Google Scholar 

  • Federico A, Tuccillo C, Terracciano F, D’Alessio C, Galdiero M, Finamore E, D’Isanto M, Peluso L, Blanco CDV, Loguercio C (2005) Heat shock protein 27 expression in patients with chronic liver damage. Immunobiology 209:729–735

    Article  CAS  Google Scholar 

  • Franco MC, Ye Y, Refakis CA, Feldman JL, Stokes AL, Basso M, de Mera RM, Sparrow NA, Calingasan NY, Kiaei M, Rhoads TW (2013) Nitration of Hsp90 induces cell death. Proc Natl Acad Sci 110:E1102–E1111

    Article  CAS  Google Scholar 

  • Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  CAS  Google Scholar 

  • Gu XH, Hao Y, Wang XL (2012) Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poult Sci 91:790–799

    Article  CAS  Google Scholar 

  • Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall L, Martinus RD (2013) Hyperglycaemia and oxidative stress upregulate HSP60 & HSP70 expression in HeLa cells. Springerplus 2(1):431

    Article  Google Scholar 

  • Harrison EM, Sharpe E, Bellamy CO, McNally SJ, Devey L, Garden OJ, Wigmore SJ (2008) Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury. Am J Phys Renal Phys 295:F397–F405

    CAS  Google Scholar 

  • Ialenti A, Di Meglio P, D’acquisto F, Pisano B, Maffia P, Grassia G, Ianaro A (2005) Inhibition of cyclooxygenase-2 gene expression by the heat shock response in J774 murine macrophages. Eur J Pharmacol 509:89–96

    Article  CAS  Google Scholar 

  • Jo SK, Ko GJ, Boo CS, Cho WY, Kim HK (2006) Heat preconditioning attenuates renal injury in ischemic ARF in rats: role of heat-shock protein 70 on NF-κB–mediated inflammation and on tubular cell injury. J Am Soc Nephrol 17:3082–3092

    Article  CAS  Google Scholar 

  • Jornot L, Mirault ME, Junod AF (1991) Differential expression of hsp70 stress proteins in human endothelial cells exposed to heat shock and hydrogen peroxide. Am J Respir Cell Mol Biol 5:265–275

    Article  CAS  Google Scholar 

  • Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  CAS  Google Scholar 

  • Kattaia AA, Abd El-Baset SA, Mohamed EM, Abdul-Maksou RS, Elfakharany YM (2017) Molecular mechanisms underlying histological and biochemical changes induced by nitrate in rat liver and the efficacy of S-Allylcysteine. Ultrastruct Pathol 41:10–22

    Article  Google Scholar 

  • Kaushal N, Bansal MP (2009) Diminished reproductive potential of male mice in response to selenium-induced oxidative stress: involvement of HSP70, HSP70-2, and MSJ-1. J Biochem Mol Toxicol 23:125–136

    Article  CAS  Google Scholar 

  • Kaushik S, Cuervo AM (2008) Chaperone-mediated autophagy. Autophagosome and Phagosome 445:227–244

    Article  CAS  Google Scholar 

  • Kiang JG, Bowman PD, Zhao B, Atkins JL Tsokos GC (2004) Heat shock Protein-70 inducers and iNOS inhibitors as therapeutics to ameliorate hemorrhagic shock. WALTER REED ARMY INST OF RESEARCH SILVER SPRING MD

    Google Scholar 

  • Kim YM, de Vera ME, Watkins SC, Billiar TR (1997) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-α-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272:1402–1411

    Article  CAS  Google Scholar 

  • Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance inSaccharomyces cerevisiae. Mol Cell Biol 18:30–38

    Article  CAS  Google Scholar 

  • Li CY, Lee JS, Ko YG, Kim JI, Seo JS (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275:25665–25671

    Article  CAS  Google Scholar 

  • Li Y, Roth S, Laser M, Ma JX, Crosson CE (2003) Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Sci 44:1299–1304

    Article  Google Scholar 

  • Li FC, Chan JY, Chan SH, Chang AY (2005) In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade. Mol Pharmacol 68:179–192

    CAS  PubMed  Google Scholar 

  • Liu H, Bowes RC, van de Water B, Sillence C, Nagelkerke JF, Stevens JL (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 272:21751–21759

    Article  CAS  Google Scholar 

  • Liu CP, Fu J, Xu FP, Wang XS, Li S (2015) The role of heat shock proteins in oxidative stress damage induced by se deficiency in chicken livers. Biometals 28:163–173

    Article  Google Scholar 

  • Malyshev IY, Malugin AV, Golubeva LY et al (1996) Nitric oxide donor induces HSP70 accumulation in the heart and in cultured cells. FEBS Lett 391:21–23

    Article  CAS  Google Scholar 

  • Matsumori Y, Northington FJ, Hong SM, Kayama T, Sheldon RA, Vexler ZS, Liu J (2006) Reduction of caspase-8 and-9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70. Stroke 37:507–512

    Article  CAS  Google Scholar 

  • Mattson MP (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8:1997–2006

    Article  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670

    Article  CAS  Google Scholar 

  • McAnulty SR, McAnulty L, Pascoe DD, Gropper SS, Keith RE, Morrow JD, Gladden LB (2005) Hyperthermia increases exercise-induced oxidative stress. Int J Sports Med 26:188–192

    Article  CAS  Google Scholar 

  • McDuffee AT, Senisterra G, Huntley S, Lepock JR, Sekhar KR, Meredith MJ, Borrelli MJ, Morrow JD, Freeman ML (1997) Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J Cell Physiol 171(2):143–151

    Article  CAS  Google Scholar 

  • Morimoto RI, Jurivich DA, Kroeger PE (1994) Regulation of heat shock gene transcription by a family of heat shock factors. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 417–455

    Google Scholar 

  • Nguyen A, Chen P, Cai H (2004) Role of CaMKII in hydrogen peroxide activation of ERK1/2, p38 MAPK, HSP27 and actin reorganization in endothelial cells. FEBS Lett 572:307–313

    Article  CAS  Google Scholar 

  • Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K (1999) 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress Identification of Proteasomes As Target Molecules. J Biol Chem 274:23787–23793

    Article  CAS  Google Scholar 

  • Omar R, Pappolla M (1993) Oxygen free radicals as inducers of heat shock protein synthesis in cultured human neuroblastoma cells: relevance to neurodegenerative disease. Eur Arch Psychiatry Clin Neurosci 242(5):262–267

    Article  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  Google Scholar 

  • Plumier JC, Ross BM, Currie RW et al (1995) Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95:1854

    Article  CAS  Google Scholar 

  • Polla BS, Kantengwa S, Francois D, Salvioli S, Franceschi C, Marsac C, Cossarizza A (1996) Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc Natl Acad Sci U S A 93:6458–6463

    Article  CAS  Google Scholar 

  • Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655

    Article  CAS  Google Scholar 

  • Sarangi U, Singh MK, Abhijnya KVV, Reddy LPA, Prasad BS, Pitke VV, Sreedhar AS (2013) Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug target insights 7:35

    Article  Google Scholar 

  • Shi B, Han B, Schwab IR, Isseroff RR (2006) UVB irradiation-induced changes in the 27-kd heat shock protein (HSP27) in human corneal epithelial cells. Cornea 25:948–955

    Article  Google Scholar 

  • Shimura H, Tanaka R, Urabe T, Hattori N (2017) Heat shock protein 27 (HSP27) as a therapeutic target in ischemic stroke and neurodegenerative disorders. Juntendo Med J 63:17–21

    Article  CAS  Google Scholar 

  • Strand C, Warshaw JB, Snow K, Jacobs HC (1994) Heat shock does not induce tolerance to hyperoxia. Lung 172:79–89

    Article  CAS  Google Scholar 

  • Stuart RA, Cyr DM, Neupert W (1994) Hsp70 in mitochondrial biogenesis: from chaperoning nascent polypeptide chains to facilitation of protein degradation. Cell Mol Life Sci 50:1002–1011

    Article  CAS  Google Scholar 

  • Um HC, Jang JH, Kim DH, Lee C, Surh YJ (2011) Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide 25:161–168

    Article  CAS  Google Scholar 

  • Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P (2015) Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852:232–242

    Article  CAS  Google Scholar 

  • Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40:323–332

    Article  CAS  Google Scholar 

  • Wen J, Li H, Zhang Y, Li X, Liu F (2015) Modification of HSP proteins and Ca2+ are responsible for the NO-derived peroxynitrite mediated neurological damage in PC12 cell. Int J Clin Exp Pathol 8:4492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HR, Menendez IY, Ryan MA, Denenberg AG, Wispé JR (1998) Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. Am J Phys Lung Cell Mol Phys 275:L836–L841

    CAS  Google Scholar 

  • Wu C, Clos J, Giorgi G, Haroun RI (1994) Structure and regulation of heat shock transcription factor. In: Morimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 395–416

    Google Scholar 

  • Xin L, Wang J, Wu Y, Guo S, Tong J (2015) Increased oxidative stress and activated heat shock proteins in human cell lines by silver nanoparticles. Hum Exp Toxicol 34:315–323

    Article  CAS  Google Scholar 

  • Xu Z, Wang Z, Li JJ, Chen C, Zhang PC, Dong L, Wang ZL (2013) Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food Chem Toxicol 58:1–7

    Article  CAS  Google Scholar 

  • Zhang X, Lu L, Dixon C, Wilmer W, Song H, Chen X, Rovin BH (2004) Stress protein activation by the cyclopentenone prostaglandin 15-deoxy-delta12, 14-prostaglandin J2 in human mesangial cells. Kidney Int 65:798–810

    Article  CAS  Google Scholar 

  • Zhang Y, Ahn YH, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18:1355–1361

    Article  CAS  Google Scholar 

  • Zhao FQ, Zhang ZW, Wang C, Zhang B, Yao HD, Li S, Xu SW (2013) The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones 18:773–783

    Article  CAS  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from Histology and Cell Biology Department, Faculty of Medicine, Zagazig University. We also thank many lab members and colleagues for critical and productive collaborations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kattaia, A.A.A.A., Abd El-Baset, S.A., Mohamed, E.M. (2018). Heat Shock Proteins in Oxidative and Nitrosative Stress. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins and Stress. Heat Shock Proteins, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-90725-3_7

Download citation

Publish with us

Policies and ethics