Skip to main content

Small Heat Shock Proteins in Stress Response of Higher Eukaryotes

  • Chapter
  • First Online:
Heat Shock Proteins and Stress

Part of the book series: Heat Shock Proteins ((HESP,volume 15))

  • 741 Accesses

Abstract

Small heat shock proteins (sHsps) are promiscuous molecular chaperones which form dynamic, spherical oligomers. Besides their main function in balancing proteostasis upon stress, sHsps are implicated in a variety of regulatory cascades especially in eukaryotic cells. The chaperone activity of sHsps is regulated by specific triggers as heat/cold stress, starvation, pH changes, chemical, biomodulators or posttranslational modifications. In this context, switching between activation and inactivation is achieved by modulating the composition of the ensemble of sHsp oligomers. This scheme of regulation allows a tremendous variability in contact sites and, thus, high flexibility in the specific, mechanistically properties of single sHsps. Regarding the evolutionary diversification and high sequence variability of sHsps it is not surprising that their cellular functions seem to be manifold. Here we summarize the current knowledge on the common structural and functional properties of sHsps. Focusing on Drosophila melanogaster as an exemplary model, we especially revisit the expression of sHsps at different stress conditions as well as changes in their expression throughout the development and aging of higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44:1622–1631

    Article  CAS  PubMed  Google Scholar 

  • Andley UP, Song Z, Wawrousek EF, Brady JP, Bassnett S, Fleming TP (2001) Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability. FASEB J 15:221–229

    Article  CAS  PubMed  Google Scholar 

  • Arndt V, Dick N, Tawo R et al (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20:143–148

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP (2011) Structure-functions of HspB1 (Hsp27). Methods Mol Biol 787:105–119

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP (2013) Human small heat shock proteins: protein interactomes of homo- and hetero-oligomeric complexes: an update. FEBS Lett 587:1959–1969

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP, Ahmad-Zadeh C (1981) Immunofluorescence localization of a small heat shock protein (hsp 23) in salivary gland cells of Drosophila melanogaster. Mol Gen Genet 184:73–79

    Article  CAS  PubMed  Google Scholar 

  • Arrigo AP, Gibert B (2014) HspB1, HspB5 and HspB4 in human cancers: potent oncogenic role of some of their client proteins. Cancers (Basel) 6:333–365

    Article  CAS  Google Scholar 

  • Arrigo AP, Simon S, Gibert B et al (2007) Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581:3665–3674

    Article  CAS  PubMed  Google Scholar 

  • Aruda AM, Baumgartner MF, Reitzel AM, Tarrant AM (2011) Heat shock protein expression during stress and diapause in the marine copepod Calanus finmarchicus. J Insect Physiol 57:665–675

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in drosophilia by heat shock. Cell 17:241–254

    Article  CAS  PubMed  Google Scholar 

  • Asomugha CO, Gupta R, Srivastava OP (2011) Structural and functional properties of NH(2)-terminal domain, core domain, and COOH-terminal extension of alphaA- and alphaB-crystallins. Mol Vis 17:2356–2367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagneris C, Bateman OA, Naylor CE et al (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    Article  CAS  PubMed  Google Scholar 

  • Bakthisaran R, Tangirala R, Rao Ch M (2015) Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta 1854:291–319

    Article  CAS  PubMed  Google Scholar 

  • Bakthisaran R, Akula KK, Tangirala R, Rao Ch M (2016) Phosphorylation of alphaB-crystallin: Role in stress, aging and patho-physiological conditions. Biochim Biophys Acta 1860:167–182

    Article  CAS  PubMed  Google Scholar 

  • Baranova EV, Weeks SD, Beelen S, Bukach OV, Gusev NB, Strelkov SV (2011) Three-dimensional structure of alpha-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol 411:110–122

    Article  CAS  PubMed  Google Scholar 

  • Basha E, Lee GJ, Demeler B, Vierling E (2004) Chaperone activity of cytosolic small heat shock proteins from wheat. Eur J Biochem 271:1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Basha E, Jones C, Wysocki V, Vierling E (2010) Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 285:11489–11497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basha E, O'Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JF, Arrigo AP, Tanguay RM (1989) Interaction of Drosophila 27,000 Mr heat-shock protein with the nucleus of heat-shocked and ecdysone-stimulated culture cells. J Cell Sci 92(Pt 1):29–36

    PubMed  Google Scholar 

  • Behl C (2016) Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol Sci 37:672–688

    Article  CAS  PubMed  Google Scholar 

  • Benesch JL, Ayoub M, Robinson CV, Aquilina JA (2008) Small heat shock protein activity is regulated by variable oligomeric substructure. J Biol Chem 283:28513–28517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley NJ, Fitch IT, Tuite MF (1992) The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast 8:95–106

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zvi A, Miller EA, Morimoto RI (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S A 106:14914–14919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bepperling A, Alte F, Kriehuber T et al (2012) Alternative bacterial two-component small heat shock protein systems. Proc Natl Acad Sci U S A 109:20407–20412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodenmiller B, Wanka S, Kraft C et al (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3:rs4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourrelle-Langlois M, Morrow G, Finet S, Tanguay RM (2016) In vitro structural and functional characterization of the small heat shock proteins (sHSP) of the cyanophage S-ShM2 and its host, Synechococcus sp. WH7803. PLoS One 11:e0162233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braun N, Zacharias M, Peschek J et al (2011) Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci U S A 108:20491–20496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocchieri L, Conway de Macario E, Macario AJ (2008) hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Calleja M, Pena P, Ugalde C, Ferreiro C, Marco R, Garesse R (1993) Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J Biol Chem 268:18891–18897

    CAS  PubMed  Google Scholar 

  • Candido EP (2002) The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog Mol Subcell Biol 28:61–78

    Article  CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Landry J (2008) HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4:237–239

    Article  CAS  PubMed  Google Scholar 

  • Carra S, Rusmini P, Crippa V et al (2013) Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 368:20110409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61

    Article  CAS  PubMed  Google Scholar 

  • Caspers GJ, Leunissen JA, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain”. J Mol Evol 40:238–248

    Article  CAS  PubMed  Google Scholar 

  • Chalova AS, Sudnitsyna MV, Semenyuk PI, Orlov VN, Gusev NB (2014) Effect of disulfide crosslinking on thermal transitions and chaperone-like activity of human small heat shock protein HspB1. Cell Stress Chaperones 19:963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SJ, Sun TX, Akhtar NJ, Liang JJ (2001) Oxidation of human lens recombinant alphaA-crystallin and cysteine-deficient mutants. J Mol Biol 305:969–976

    Article  CAS  PubMed  Google Scholar 

  • Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246:382–385

    Article  CAS  PubMed  Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouser AF, Klevit RE (2017) pH-dependent structural modulation is conserved in the human small heat shock protein HSBP1. Cell Stress Chaperones 22:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig EA, McCarthy BJ (1980) Four Drosophila heat shock genes at 67B: characterization of recombinant plasmids. Nucleic Acids Res 8:4441–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8:e1000450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • de Miguel N, Echeverria PC, Angel SO (2005) Differential subcellular localization of members of the Toxoplasma gondii small heat shock protein family. Eukaryot Cell 4:1990–1997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Miguel N, Braun N, Bepperling A et al (2009) Structural and functional diversity in the family of small heat shock proteins from the parasite Toxoplasma gondii. Biochim Biophys Acta 1793:1738–1748

    Article  PubMed  CAS  Google Scholar 

  • Delbecq SP, Klevit RE (2013) One size does not fit all, the oligomeric states of alphaB crystallin. FEBS Lett 587:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • den Engelsman J, van de Schootbrugge C, Yong J, Pruijn GJ, Boelens WC (2013) Pseudophosphorylated alphaB-crystallin is a nuclear chaperone imported into the nucleus with help of the SMN complex. PLoS One 8:e73489

    Article  CAS  Google Scholar 

  • Deng M, Chen PC, Xie S et al (2010) The small heat shock protein alphaA-crystallin is expressed in pancreas and acts as a negative regulator of carcinogenesis. Biochim Biophys Acta 1802:621–631

    Article  CAS  PubMed  Google Scholar 

  • Derham BK, Harding JJ (1999) Alpha-crystallin as a molecular chaperone. Prog Retin Eye Res 18:463–509

    Article  CAS  PubMed  Google Scholar 

  • Eaton P, Fuller W, Shattock MJ (2002) S-thiolation of HSP27 regulates its multimeric aggregate size independently of phosphorylation. J Biol Chem 277:21189–21196

    Article  CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrnsperger M, Lilie H, Gaestel M, Buchner J (1999) The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 274:14867–14874

    Article  CAS  PubMed  Google Scholar 

  • Elliott JL, Der Perng M, Prescott AR, Jansen KA, Koenderink GH, Quinlan RA (2013) The specificity of the interaction between alphaB-crystallin and desmin filaments and its impact on filament aggregation and cell viability. Philos Trans R Soc Lond B Biol Sci 368:20120375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagerholm PP, Philipson BT, Lindstrom B (1981) Normal human lens - the distribution of protein. Exp Eye Res 33:615–620

    Article  CAS  PubMed  Google Scholar 

  • Fedarko NS (2011) The biology of aging and frailty. Clin Geriatr Med 27:27–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fernandez MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70 - a master regulator in protein degradation. FEBS Lett

    Google Scholar 

  • Ficarro SB, McCleland ML, Stukenberg PT et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20:301–305

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein T, Kastenmuller A, Stein ML et al (2015) The Chaperone activity of the developmental small heat shock protein sip1 is regulated by pH-dependent conformational changes. Mol Cell 58:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Fontaine JM, Rest JS, Welsh MJ, Benndorf R (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones 8:62–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine JM, Sun X, Benndorf R, Welsh MJ (2005) Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3. Biochem Biophys Res Commun 337:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Poirier DJ, Seguin SJ et al (2009) Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction. Biochem J 425:245–255

    Article  PubMed  CAS  Google Scholar 

  • Gaestel M (2002) sHsp-phosphorylation, enzymes, signaling pathways and functional implications. Prog Mol Subcell Biol 28:151–169

    Article  CAS  PubMed  Google Scholar 

  • Ganassi M, Mateju D, Bigi I et al (2016) A surveillance function of the HSPB8-BAG3-HSP70 chaperone complex ensures stress granule integrity and dynamism. Mol Cell 63:796–810

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol 44:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318

    Article  CAS  PubMed  Google Scholar 

  • Glaser RL, Lis JT (1990) Multiple, compensatory regulatory elements specify spermatocyte-specific expression of the Drosophila melanogaster hsp26 gene. Mol Cell Biol 10:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser RL, Wolfner MF, Lis JT (1986) Spatial and temporal pattern of hsp26 expression during normal development. EMBO J 5:747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Mejia ME, Voss OH, Murnan EJ, Doseff AI (2010) Apigenin-induced apoptosis of leukemia cells is mediated by a bimodal and differentially regulated residue-specific phosphorylation of heat-shock protein-27. Cell Death Dis 1:e64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073

    CAS  PubMed  Google Scholar 

  • Hanazono Y, Takeda K, Oka T et al (2013) Nonequivalence observed for the 16-meric structure of a small heat shock protein, SpHsp16.0, from Schizosaccharomyces pombe. Structure 21:220–228

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck M, Walke S, Stromer T et al (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck M, Braun N, Stromer T et al (2004a) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 23:638–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslbeck M, Ignatiou A, Saibil H et al (2004b) A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J Mol Biol 343:445–455

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  CAS  PubMed  Google Scholar 

  • Haslbeck M, Weinkauf S, Buchner J (2015) Regulation of the chaperone function of small Hsps. In: Tanguay, RMH LES (eds) The big book on small heat shock, vol 8. Springer International Publishing, Switzerland, pp 155–178

    Chapter  Google Scholar 

  • Haslbeck M, Peschek J, Buchner J, Weinkauf S (2016) Structure and function of α-crystallins: traversing from in vitro to in vivo. Biochim Biophys Acta 1860:149–166

    Article  CAS  PubMed  Google Scholar 

  • Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JL (2013) Small heat-shock proteins: paramedics of the cell. Top Curr Chem 328:69–98

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  • Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz J (2003) Alpha-crystallin. Exp Eye Res 76:145–153

    Article  CAS  PubMed  Google Scholar 

  • Horwitz J, Bova MP, Ding LL, Haley DA, Stewart PL (1999) Lens alpha-crystallin: function and structure. Eye (Lond) 13(Pt 3b):403–408

    Article  Google Scholar 

  • Ingolia TD, Craig EA (1982) Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat shock. Proc Natl Acad Sci U S A 79:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irobi J, Van Impe K, Seeman P et al (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36:597–601

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Jamrich M, Greenleaf AL, Bautz EK (1977) Localization of RNA polymerase in polytene chromosomes of drosophila melanogaster. Proc Natl Acad Sci U S A 74:2079–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jehle S, Vollmar BS, Bardiaux B et al (2011) N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci U S A 108:6409–6414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson FB, Sinclair DA, Guarente L (1999) Molecular biology of aging. Cell 96:291–302

    Article  CAS  PubMed  Google Scholar 

  • Jovcevski B, Kelly MA, Rote AP et al (2015) Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity. Chem Biol 22:186–195

    Article  CAS  PubMed  Google Scholar 

  • Kallappagoudar S, Varma P, Pathak RU, Senthilkumar R, Mishra RK (2010) Nuclear matrix proteome analysis of drosophila melanogaster. Mol Cell Proteomics 9:2005–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Garrido C (2012) HSPBs: small proteins with big implications in human disease. Int J Biochem Cell Biol 44(10):1706

    Article  CAS  PubMed  Google Scholar 

  • Kang SH, Kang KW, Kim KH et al (2008) Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kannan R, Sreekumar PG, Hinton DR (2012) Novel roles for alpha-crystallins in retinal function and disease. Prog Retin Eye Res 31:576–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantorow M, Piatigorsky J (1998) Phosphorylations of alpha A- and alpha B-crystallin. Int J Biol Macromol 22:307–314

    Article  CAS  PubMed  Google Scholar 

  • Kappe G, Verschuure P, Philipsen RL et al (2001) Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta 1520:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kappe G, Leunissen JA, de Jong WW (2002) Evolution and diversity of prokaryotic small heat shock proteins. Prog Mol Subcell Biol 28:1–17

    Article  CAS  PubMed  Google Scholar 

  • Kappe G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47:565–577

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Shinohara H, Kurobe N, Goto S, Inaguma Y, Ohshima K (1991) Immunoreactive alpha A crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. Biochim Biophys Acta 1080:173–180

    Article  CAS  PubMed  Google Scholar 

  • Kayser J, Haslbeck M, Dempfle L et al (2013) The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks. Biophys J 105:1778–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  CAS  PubMed  Google Scholar 

  • King AM, MacRae TH (2012) The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress. PLoS One 7:e43723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King V, Tower J (1999) Aging-specific expression of Drosophila hsp22. Dev Biol 207:107–118

    Article  CAS  PubMed  Google Scholar 

  • Ko E, Kim M, Park Y, Ahn YJ (2017) Heterologous expression of the carrot Hsp17.7 gene increased growth, cell viability, and protein solubility in transformed yeast (Saccharomyces cerevisiae) under heat, cold, acid, and osmotic stress conditions. Curr Microbiol 74:952–960

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kobayashi E, Sato S et al (1994) Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res 1:15–26

    Article  CAS  PubMed  Google Scholar 

  • Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66:3289–3307

    Article  CAS  PubMed  Google Scholar 

  • Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24:3633–3642

    Article  CAS  PubMed  Google Scholar 

  • Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laganowsky A, Benesch JL, Landau M et al (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert W, Rutsdottir G, Hussein R, Bernfur K, Kjellstrom S, Emanuelsson C (2013) Probing the transient interaction between the small heat-shock protein Hsp21 and a model substrate protein using crosslinking mass spectrometry. Cell Stress Chaperones 18:75–85

    Article  CAS  PubMed  Google Scholar 

  • Landis GN, Abdueva D, Skvortsov D et al (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci U S A 101:7663–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landis G, Shen J, Tower J (2012) Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging (Albany NY) 4:768–789

    Article  CAS  Google Scholar 

  • Landry J, Lambert H, Zhou M et al (1992) Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267:794–803

    CAS  PubMed  Google Scholar 

  • Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder B, Jin Z, Freedman JH, Rubin CS (1996) Molecular characterization of a novel, developmentally regulated small embryonic chaperone from Caenorhabditis elegans. J Biol Chem 271:30158–30166

    Article  CAS  PubMed  Google Scholar 

  • Lindner RA, Treweek TM, Carver JA (2001) The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin. Biochem J 354:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7:471–474

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Chen J, Yang B, Wang Y (2015a) Oligomer-dependent and -independent chaperone activity of sHsps in different stressed conditions. FEBS Open Bio 5:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Chen JY, Yang B, Wang FH, Wang YH, Yun CH (2015b) Active-State Structures of a Small Heat-Shock Protein Revealed a Molecular Switch for Chaperone Function. Structure 23:2066–2075

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Pan Y, Kao SY et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  PubMed  Google Scholar 

  • Lund AA, Rhoads DM, Lund AL, Cerny RL, Elthon TE (2001) In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol Chem 276:29924–29929

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Haslbeck M, Babujee L, Jahn O, Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol 141:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maaroufi H, Tanguay RM (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS One 8:e81207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae TH (2016) Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chaperones 21:9–18

    Article  CAS  PubMed  Google Scholar 

  • Marin R, Tanguay RM (1996) Stage-specific localization of the small heat shock protein Hsp27 during oogenesis in Drosophila melanogaster. Chromosoma 105:142–149

    Article  CAS  PubMed  Google Scholar 

  • Marin R, Valet JP, Tanguay RM (1993) hsp23 and hsp26 exhibit distinct spatial and temporal patterns of constitutive expression in Drosophila adults. Dev Genet 14:69–77

    Article  CAS  PubMed  Google Scholar 

  • McCarroll SA, Murphy CT, Zou S et al (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36:197–204

    Article  CAS  PubMed  Google Scholar 

  • McClaren M, Isseroff RR (1994) Dynamic changes in intracellular localization and isoforms of the 27-kD stress protein in human keratinocytes. J Invest Dermatol 102:375–381

    Article  CAS  PubMed  Google Scholar 

  • McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48:3828–3837

    Article  CAS  PubMed  Google Scholar 

  • McVicar N, Li AX, Goncalves DF et al (2014) Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 34:690–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Merck KB, De Haard-Hoekman WA, Oude Essink BB, Bloemendal H, De Jong WW (1992) Expression and aggregation of recombinant alpha A-crystallin and its two domains. Biochim Biophys Acta 1130:267–276

    Article  CAS  PubMed  Google Scholar 

  • Michaud S, Lavoie S, Guimond MO, Tanguay RM (2008) The nuclear localization of Drosophila Hsp27 is dependent on a monopartite arginine-rich NLS and is uncoupled from its association to nuclear speckles. Biochim Biophys Acta 1783:1200–1210

    Article  CAS  PubMed  Google Scholar 

  • Morrow GT, Robert M (2015) Drosophila small heat shock proteins: an update on their features and functions. The big book on small heat shock proteins

    Google Scholar 

  • Morrow G, Tanguay RM (2003) Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol 14:291–299

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Inaguma Y, Kato K, Tanguay RM (2000) The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. J Biol Chem 275:31204–31210

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Battistini S, Zhang P, Tanguay RM (2004a) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 279:43382–43385

    Article  CAS  PubMed  Google Scholar 

  • Morrow G, Samson M, Michaud S, Tanguay RM (2004b) Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J 18:598–599

    Article  CAS  PubMed  Google Scholar 

  • Mymrikov EV, Haslbeck M (2015) Medical implications of understanding the functions of human small heat shock proteins. Expert Rev Proteomics 12:295–308

    Article  CAS  PubMed  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 17:157–169

    Article  CAS  PubMed  Google Scholar 

  • Mymrikov EV, Daake M, Richter B, Haslbeck M, Buchner J (2017) The Chaperone Activity and Substrate Spectrum of Human Small Heat Shock Proteins. J Biol Chem 292:672–684

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93. table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha J, Karmegam RV, Masilamoni JG, Terry AV, Cashikar AG (2011) Behavioral defects in chaperone-deficient Alzheimer's disease model mice. PLoS One 6:e16550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oya-Ito T, Liu BF, Nagaraj RH (2006) Effect of methylglyoxal modification and phosphorylation on the chaperone and anti-apoptotic properties of heat shock protein 27. J Cell Biochem 99:279–291

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Farber R, Nakazawa A et al (2000) Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 19:1975–1981

    Article  CAS  PubMed  Google Scholar 

  • Pasta SY, Raman B, Ramakrishna T, Rao Ch M (2003) Role of the conserved SRLFDQFFG region of alpha-crystallin, a small heat shock protein. Effect on oligomeric size, subunit exchange, and chaperone-like activity. J Biol Chem 278:51159–51166

    Article  CAS  PubMed  Google Scholar 

  • Pauli D, Arrigo AP, Vazquez J, Tonka CH, Tissieres A (1989) Expression of the small heat shock genes during Drosophila development: comparison of the accumulation of hsp23 and hsp27 mRNAs and polypeptides. Genome 31:671–676

    Article  CAS  PubMed  Google Scholar 

  • Perng MD, Muchowski PJ, van Den IP et al (1999) The cardiomyopathy and lens cataract mutation in alphaB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J Biol Chem 274:33235–33243

    Article  CAS  PubMed  Google Scholar 

  • Peschek J, Braun N, Franzmann TM et al (2009) The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc Natl Acad Sci U S A 106:13272–13277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peschek J, Braun N, Rohrberg J et al (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci U S A 110:E3780–E3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petko L, Lindquist S (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45:885–894

    Article  CAS  PubMed  Google Scholar 

  • Pletcher SD, Macdonald SJ, Marguerie R et al (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12:712–723

    Article  CAS  PubMed  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  • Preis W, Bestehorn A, Buchner J, Haslbeck M (2017) An alternative splice variant of human alphaA-crystallin modulates the oligomer ensemble and the chaperone activity of alpha-crystallins. Cell Stress Chaperones 22:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan RA, Ellis RJ (2013) Chaperones: needed for both the good times and the bad times. Philos Trans R Soc Lond B Biol Sci 368:20130091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajagopal P, Tse E, Borst AJ et al (2015) A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis. Elife 4

    Google Scholar 

  • Reis-Rodrigues P, Czerwieniec G, Peters TW et al (2012) Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11:120–127

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Ritossa P (1962) Problems of prophylactic vaccinations of infants. Riv Ist Sieroter Ital 37:79–108

    CAS  PubMed  Google Scholar 

  • Rodwell GE, Sonu R, Zahn JM et al (2004) A transcriptional profile of aging in the human kidney. PLoS Biol 2:e427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rogalla T, Ehrnsperger M, Preville X et al (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J Biol Chem 274:18947–18956

    Article  CAS  PubMed  Google Scholar 

  • Rossi JM, Lindquist S (1989) The intracellular location of yeast heat-shock protein 26 varies with metabolism. J Cell Biol 108:425–439

    Article  CAS  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  PubMed  Google Scholar 

  • Satish Kumar M, Mrudula T, Mitra N, Bhanuprakash Reddy G (2004) Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification. Exp Eye Res 79:577–583

    Article  CAS  PubMed  Google Scholar 

  • Shashidharamurthy R, Koteiche HA, Dong J, McHaourab HS (2005) Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280:5281–5289

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Koteiche HA, McDonald ET, Fox TL, Stewart PL, McHaourab HS (2013) Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding. J Biol Chem 288:4819–4830

    Article  CAS  PubMed  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Doring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slingsby C, Wistow GJ, Clark AR (2013) Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal RD (1975) Mitochondrial changes in flight muscles of normal and flightless Drosophila melanogaster with age. J Morphol 145:337–353

    Article  CAS  PubMed  Google Scholar 

  • Song NH, Ahn YJ (2011) DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. N Biotechnol 28:698–704

    Article  CAS  PubMed  Google Scholar 

  • Specht S, Miller SB, Mogk A, Bukau B (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 195:617–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamler R, Kappe G, Boelens W, Slingsby C (2005) Wrapping the alpha-crystallin domain fold in a chaperone assembly. J Mol Biol 353:68–79

    Article  CAS  PubMed  Google Scholar 

  • Stege GJ, Li GC, Li L, Kampinga HH, Konings AW (1994) On the role of hsp72 in heat-induced intranuclear protein aggregation. Int J Hyperthermia 10:659–674

    Article  CAS  PubMed  Google Scholar 

  • Stromer T, Ehrnsperger M, Gaestel M, Buchner J (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278:18015–18021

    Article  CAS  PubMed  Google Scholar 

  • Studer S, Narberhaus F (2000) Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 275:37212–37218

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272:2613–2627

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, Benndorf R (2004) Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem 279:2394–2402

    Article  CAS  PubMed  Google Scholar 

  • Taylor RC, Dillin A (2011) Aging as an event of proteostasis collapse. Cold Spring Harb Perspect Biol 3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol 46:355–362

    Article  CAS  PubMed  Google Scholar 

  • Treweek TM, Meehan S, Ecroyd H, Carver JA (2015) Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 72:429–451

    Article  CAS  PubMed  Google Scholar 

  • Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419

    Article  PubMed  CAS  Google Scholar 

  • Van Montfort R, Slingsby C, Vierling E (2001a) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  PubMed  Google Scholar 

  • van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E (2001b) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8:1025–1030

    Article  PubMed  CAS  Google Scholar 

  • Verschuure P, Tatard C, Boelens WC, Grongnet JF, David JC (2003) Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur J Cell Biol 82:523–530

    Article  CAS  PubMed  Google Scholar 

  • Volkov RA, Panchuk II, Schoffl F (2005) Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol Biol 57:487–502

    Article  CAS  PubMed  Google Scholar 

  • Vos MJ, Zijlstra MP, Kanon B et al (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19:4677–4693

    Article  CAS  PubMed  Google Scholar 

  • Vos MJ, Carra S, Kanon B et al (2016) Specific protein homeostatic functions of small heat-shock proteins increase lifespan. Aging Cell 15:217–226

    Article  CAS  PubMed  Google Scholar 

  • Voss OH, Batra S, Kolattukudy SJ, Gonzalez-Mejia ME, Smith JB, Doseff AI (2007) Binding of caspase-3 prodomain to heat shock protein 27 regulates monocyte apoptosis by inhibiting caspase-3 proteolytic activation. J Biol Chem 282:25088–25099

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth SC, Craig EA, McCarthy BJ (1980) Genes for three Drosophila heat-shock-induced proteins at a single locus. Proc Natl Acad Sci U S A 77:2134–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DW, Benzer S (2004) Mitochondrial “swirls” induced by oxygen stress and in the Drosophila mutant hyperswirl. Proc Natl Acad Sci U S A 101:10290–10295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther DM, Kasturi P, Zheng M et al (2015) Widespread Proteome Remodeling and Aggregation in Aging C. elegans. Cell 161:919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HD, Kazemi-Esfarjani P, Benzer S (2004a) Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci U S A 101:12610–12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004b) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zou Z, Li Q et al (2017) Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Rep 36:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Vierling E (1999) Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci U S A 96:14394–14399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13:127–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White HE, Orlova EV, Chen S et al (2006) Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure 14:1197–1204

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582–587

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, Verbeek MM (2006) Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res 1089:67–78

    Article  CAS  PubMed  Google Scholar 

  • Wotton D, Freeman K, Shore D (1996) Multimerization of Hsp42p, a novel heat shock protein of Saccharomyces cerevisiae, is dependent on a conserved carboxyl-terminal sequence. J Biol Chem 271:2717–2723

    Article  CAS  PubMed  Google Scholar 

  • Xun W, Shi L, Cao T et al (2015) Dual functions in response to heat stress and spermatogenesis: characterization of expression profile of small heat shock proteins 9 and 10 in goat testis. Biomed Res Int 2015:686239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang H, Huang S, Dai H, Gong Y, Zheng C, Chang Z (1999) The Mycobacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity. Protein Sci 8:174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahn JM, Sonu R, Vogel H et al (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2: e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Liu B, Li J et al (2015) Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16: 181

    Google Scholar 

  • Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32:1161–1170

    Article  Google Scholar 

  • Zou S, Meadows S, Sharp L, Jan LY, Jan YN (2000) Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci U S A 97:13726–13731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (SFB 1035) for financial support and Oliver Wenisch and Georgie Johnson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Haslbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strauch, A., Haslbeck, M. (2018). Small Heat Shock Proteins in Stress Response of Higher Eukaryotes. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins and Stress. Heat Shock Proteins, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-90725-3_14

Download citation

Publish with us

Policies and ethics