Skip to main content

Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells

  • Chapter
  • First Online:
Heat Shock Proteins and Stress

Part of the book series: Heat Shock Proteins ((HESP,volume 15))

Abstract

The heat shock response is a highly conserved cellular stress response pathway that protects cells against stress-induced damages. The heat shock response is characterized by the activation of the heat shock factor, a transcription factor, which in turn regulate the expression of heat shock proteins which help the cells to recover from the stress-induced damages. While the mechanism behind the activation of heat shock factor and the expression of heat shock proteins are well studied, our understanding on the other aspects of the heat shock response pathway – mainly the global suppression of transcriptional and the translational processes – has been very limited. Thus, this chapter would focus more on the recent studies elucidating the mechanism behind the heat shock-induced transcriptional and post-transcriptional repression of gene expression. Given the importance of the stress response pathways in cell survival, the chapter would focus on the discoveries made in the mammalian systems and their impact on human health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali YO, Kitay BM, Zhai RG (2010) Dealing with misfolded proteins: examining the neuroprotective role of molecular chaperones in neurodegeneration. Molecules 15:6859–6887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen TA, Von KS, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    Article  CAS  PubMed  Google Scholar 

  • Banerji SS, Theodorakis NG, Morimoto RI (1984) Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Mol Cell Biol 4:2437–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell JF, Moore GJ (1974) Effects of high ambient temperature on various stages of rabies virus infection in mice. Infect Immun 10:510–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernheim HA, Kluger MJ (1976) Fever: effect of drug-induced antipyresis on survival. Science 193:237–239

    Article  CAS  PubMed  Google Scholar 

  • Bond U, Schlesinger MJ (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol 5:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosco DA, Lemay N, Ko HK, Zhou H et al (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19:4160–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of Translation. Mol Cell 36:932–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153:1461–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cernilogar FM, Onorati MC, Kothe GO et al (2011) Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480:391–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalupníková K, Lattmann S, Selak N et al (2008) Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J Biol Chem 283:35186–35198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiodi I, Corioni M, Giordano M et al (2004) RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies. Nucleic Acids Res 32:4127–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A, Finley D, Varshavsky A (1984) Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37:57–66

    Article  CAS  PubMed  Google Scholar 

  • De Benedetti A, Baglioni C (1984) Inhibition of mRNA binding to ribosomes by localized activation of dsRNA-dependent protein kinase. Nature 311:79–81

    Article  PubMed  Google Scholar 

  • De Benedetti A, Baglioni C (1986) Activation of hemin-regulated initiation factor-2 kinase in heat-shocked HeLa cells. J Biol Chem 261:338–342

    PubMed  Google Scholar 

  • Denegri M, Chiodi I, Corioni M, Cobianchi F, Riva S, Biamonti G (2001) Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Mol Biol Cell 12:3502–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokladny K, Zuhl MN, Mandell M (2013) Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J Biol Chem 288:14959–14972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dokladny K, Myers OB, Moseley PL (2015) Heat shock response and autophagy-cooperation and control. Autophagy 11:200–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Wolfer DP, Lipp HP, Büeler H (2005) Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11:80–88

    Article  CAS  PubMed  Google Scholar 

  • Dubois MF, Galabru J, Lebon P, Safer B, Hovanessian AG (1989) Reduced activity of the interferon-induced double-stranded RNA-dependent protein kinase during a heat shock stress. J Biol Chem 264:12165–12171

    CAS  PubMed  Google Scholar 

  • Emde A, Hornstein E (2014) miRNAs at the interface of cellular stress and disease. EMBO J 33:1428–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito AL (1984) Aspirin impairs antibacterial mechanisms in experimental pneumococcal pneumonia. Am Rev Respir Dis 130:857–862

    CAS  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Izaurralde E (2007a) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22

    Article  CAS  PubMed  Google Scholar 

  • Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007b) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley D, Ciechanover A, Varshavsky A (2004) Ubiquitin as a central cellular regulator. Cell. 23 116(2 Suppl):S29–S32

    Article  CAS  PubMed  Google Scholar 

  • Goenka A, Sengupta S, Pandey R et al (2016) Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression. J Cell Sci 129:3541–3552

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL, St. John AC (1976) Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem 45:747–803

    Article  CAS  PubMed  Google Scholar 

  • Hasday JD, Singh IS (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206–8214

    CAS  PubMed  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    Article  CAS  PubMed  Google Scholar 

  • Hussong M, Kaehler C, Kerick M et al (2017) The bromodomain protein BRD4 regulates splicing during heat shock. Nucleic Acids Res 45:382–394

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Rai A, Mishra R, Ganesh S (2017) Loss of malin, but not laforin, results in compromised autophagic flux and proteasomal dysfunction in cells exposed to heat shock. Cell Stress Chaperones 22:307–315

    Article  CAS  PubMed  Google Scholar 

  • Jamrich M, Greenleaf AL, Bautz EK (1977) Localization of RNA polymerase in polytene chromosomes of Drosophila melanogaster. Proc Natl Acad Sci U S A 74:2079–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Cross AS, Singh IS et al (2000) Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun 68:1265–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly C, Lakhotia SC (2006) Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 34:5508–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly C, Metz A, Govin J et al (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung AE, Fitzsimons HL, Bland RJ, During MJ, Young D (2008) HSP70 and constitutively active HSF1 mediate protection against CDCrel-1-mediated toxicity. Mol Ther 16:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Kalia SK, Kalia LV, McLean PJ (2010) Molecular chaperones as rational drug targets for Parkinson's disease therapeutics. CNS Neurol Disord Drug Targets 9:741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantidze OL, Velichko AK, Razin SV (2015) Heat Stress-Induced Transcriptional Repression. Biochemistry (Mosc.) 80:990–993

    Article  CAS  Google Scholar 

  • Kluger MJ (1978) The evolution and adaptive value of fever. Am Sci 66:38–43

    CAS  PubMed  Google Scholar 

  • Kluger MJ (2005) The adaptive value of fever. In: Mackowiak PA (ed) Fever: Basic Mechanisms and Management. Raven Press, New York, pp 105–124

    Google Scholar 

  • Kumar P, Ambasta RK, Veereshwarayya V et al (2007) CHIP and HSPs interact with beta-APP in a proteasome-dependent manner and influence Abeta metabolism. Hum Mol Genet 16:848–864

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa S, Kobune F, Okuyama K, Sugiura A (1987) Effects of antipyretics in rinderpest virus infection in rabbits. J Infect Dis 155:991–997

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC (1989) The 93D heat shock locus of Drosophila melanogaster: modulation by genetic and developmental factors. Genome 31:677–683

    Article  CAS  PubMed  Google Scholar 

  • Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C (2008) Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 12:743–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite JSM, Cruzat VF, Krause M et al (2016) Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. Nutrire 41:17

    Article  Google Scholar 

  • Leung AK, Sharp PA (2013) Quantifying Argonaute proteins in and out of GW/P-bodies: implications in microRNA activities. Adv Exp Med Biol 768:165–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine M (2011) Paused RNA polymerase II as a developmental checkpoint. Cell 145:502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Spearow J, Rubin CM, Schmid CW (1999) Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo. Gene 239:367–372

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Liu WM, Chu WM, Choudary PV, Schmid CW (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TT, Hu CH, Tsai CD, Li CW, Lin YF, Wang JY (2010) Heat stroke induces autophagy as a protection mechanism against neurodegeneration in the brain. Shock 34:643–648

    Article  CAS  PubMed  Google Scholar 

  • Lotan R, Bar-On VG, Harel-Sharvit L, Duek L, Melamed D, Choder M (2005) The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev 19:3004–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahboubi H, Stochaj U (2017) Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim Biophys Acta 1863:884–895

    Article  CAS  Google Scholar 

  • Maheshwari M, Bhutani S, Das A et al (2014) Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington's disease. Hum Mol Genet 23:2737–2751

    Article  CAS  PubMed  Google Scholar 

  • Mariner PD, Walters RD, Espinoza CA et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    Article  CAS  PubMed  Google Scholar 

  • Mateju D, Franzmann TM, Patel A et al (2017) An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J 36:1669–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matts RL, Xu Z, Pal JK, Chen JJ (1992) Interactions of the heme-regulated eIF-2 alpha kinase with heat shock proteins in rabbit reticulocyte lysates. J Biol Chem 267:18160–18167

    CAS  PubMed  Google Scholar 

  • Matts RL, Hurst R, Xu Z (1993) Denatured proteins inhibit translation in hemin-supplemented rabbit reticulocyte lysate by inducing the activation of the heme-regulated eIF-2 alpha kinase. Biochemistry 32:7323–7328

    Article  CAS  PubMed  Google Scholar 

  • McDonald KK, Aulas A, Destroismaisons L et al (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410

    Article  CAS  PubMed  Google Scholar 

  • Metz A, Soret J, Vourc'h C, Tazi J, Jolly C (2004) A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 117:4551–4558

    Article  CAS  PubMed  Google Scholar 

  • Missra A, Gilmour DS (2010) Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc Natl Acad Sci U S A 107:11301–11306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal S, Ganesh S (2010) Protein quality control mechanisms and neurodegenerative disorders: Checks, balances and deadlocks. Neurosci Res 68:159–166

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Nagel F, Falkenburger BH, Tönges L et al (2008) Tat-Hsp70 protects dopaminergic neurons in midbrain cultures and in the substantia nigra in models of Parkinson's disease. J Neurochem 105:853–864

    Article  CAS  PubMed  Google Scholar 

  • Parag HA, Raboy B, Kulka RG (1987) Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO J 6:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Ortín JE, Alepuz P, Chávez S, Choder M (2013) Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression. J Mol Biol 425:3750–3775

    Article  PubMed  CAS  Google Scholar 

  • Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305

    Article  CAS  PubMed  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  • Prahlad V, Cornelius T, Morimoto RI (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reineke LC, Lloyd RE (2015) The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses. J Virol 89:2575–2589

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  CAS  PubMed  Google Scholar 

  • Rougvie AE, Lis JT (1988) The RNA polymerase II molecule at the 5' end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54:795–804

    Article  CAS  PubMed  Google Scholar 

  • Rowlands AG, Montine KS, Henshaw EC, Panniers R (1988) Physiological stresses inhibit guanine-nucleotide-exchange factor in Ehrlich cells. Eur J Biochem 175:93–99

    Article  CAS  PubMed  Google Scholar 

  • Sala AJ, Bott LC, Morimoto RI (2017) Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol 216:1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev 5:1902–1911

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt J, Rasmussen AJ (1960) The influence of environmental temperature on the course of experimental herpes simplex infection. J Infect Dis 107:356–360

    Article  CAS  PubMed  Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G et al (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  CAS  PubMed  Google Scholar 

  • Shalgi R, Hurt JA, Lindquist S, Burge CB (2014) Widespread inhibition of posttranscriptional splicing shapes the cellular transcriptome following heat shock. Cell Rep 7:1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Gao F, Zhang B et al (2017) Aggregation of SND1 in stress granules is associated with the microtubule cytoskeleton during heat shock stimulus. Anat Rec (Hoboken). https://doi.org/10.1002/ar.23642

    Article  CAS  PubMed  Google Scholar 

  • Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40:228–237

    Article  CAS  PubMed  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    Article  CAS  PubMed  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81:678–699

    Article  CAS  Google Scholar 

  • Storti RV, Scott MP, Rich A, Pardue ML (1980) Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell 22:825–834

    Article  CAS  PubMed  Google Scholar 

  • Swisher KD, Parker R (2010) Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLoS One 5:e10006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tatum MC, Ooi FK, Chikka MR et al (2015) Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 25:163–174

    Article  CAS  PubMed  Google Scholar 

  • Teves SS, Henikoff S (2013) The heat shock response: A case study of chromatin dynamics in gene regulation. Biochem Cell Biol 91:42–48

    Article  CAS  PubMed  Google Scholar 

  • Trachsel H, Ranu RS, London IM (1978) Regulation of protein synthesis in rabbit reticulocyte lysates: purification and characterization of heme-reversible translational inhibitor. Proc Natl Acad Sci U S A 75:3654–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay M, Bhadauriya P, Ganesh S (2016) Heat shock modulates the subcellular localization, stability, and activity of HIPK2. Biochem Biophys Res Commun 472:580–584

    Article  CAS  PubMed  Google Scholar 

  • Vaughn LK, Veale WL, Cooper KE (1980) Antipyresis: its effect on mortality rate of bacterially infected rabbits. Brain Res Bull 5:69–73

    Article  CAS  PubMed  Google Scholar 

  • Velichko AK, Petrova NV, Kantidze OL, Razin SV (2012) Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 23:3450–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velichko AK, Markova EN, Petrova NV, Razin SV, Kantidze OL (2013) Mechanisms of heat shock response in mammals. Cell Mol Life Sci 70:4229–4241

    Article  CAS  PubMed  Google Scholar 

  • Walters RW, Muhlrad D, Garcia J, Parker R (2015) Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weighardt F, Cobianchi F, Cartegni L et al (1999) A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. J Cell Sci 112:1465–1476

    CAS  PubMed  Google Scholar 

  • Weissbach R, Scadden AD (2012) Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 18:462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097–33100

    Article  CAS  PubMed  Google Scholar 

  • Westwood JT, Wu C (1993) Activation of Drosophila heat shock factor: conformational change associated wqith a monomer-to-trimer transition. Mol Cell Biol 13:3481–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CH, Yamaguchi Y, Benjamin LR et al (2003) NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17:1402–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci U S A 106:5569–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, York B, Wang S, Feng Q, Xu J, O'Malley BW (2007) An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 25:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zampedri C, Tinoco-Cuellar M, Carrillo-Rosas S et al (2016) Zebrafish P54 RNA helicases are cytoplasmic granule residents that are required for development and stress resilience. Biol Open 5:1473–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Odom DT, Koo S-H et al (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102:4459–4464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Subramaniam Ganesh is a Tata Innovation Fellow and P.K. Kelkar Endowed Chair Professor at IIT Kanpur. Research work on cellular stress response in his laboratory is supported by the Department of Biotechnology, Govt. of India (Grant Number: BT/HRD/35/01/01/2017). Rashmi Parihar is a SERB Young Scientists and is supported by a research grant from the Science and Engineering Research Board, Govt. of India (Grant Number: YSS/2015/001818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Ganesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goenka, A., Parihar, R., Ganesh, S. (2018). Heat Shock-Induced Transcriptional and Translational Arrest in Mammalian Cells. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins and Stress. Heat Shock Proteins, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-90725-3_12

Download citation

Publish with us

Policies and ethics