Skip to main content

Molecular Chaperones and the Nuclear Response to Stress

  • Chapter
  • First Online:
Heat Shock Proteins and Stress

Part of the book series: Heat Shock Proteins ((HESP,volume 15))

  • 695 Accesses

Abstract

Chaperones are a well conserved class of proteins that reside in many different cellular compartments. The nucleus is a compartment of special interest because it houses the genetic material and allows for the expression and maintenance of genes. Many chaperones localize to the nucleus under stress conditions. The current body of evidence indicates that the nuclear function of chaperones is similar to chaperone function in the cytoplasm. Emerging evidence on the nuclear import pathway for chaperones suggests that novel pathways exist that allow chaperones to enter the nucleus under conditions of environmental stress. One such pathway, the Hikeshi pathway, is responsible for the transport of HSP70 and possibly other molecular chaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H, Waza M, Tokui K, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci 27:5115–5126

    Article  CAS  Google Scholar 

  • Alastalo T-P, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570

    Article  CAS  Google Scholar 

  • Bao YP, Cook LJ, O’Donovan D, Uyama E, Rubinsztein DC (2002) Mammalian, yeast, bacterial, and chemical chaperones reduce aggregate formation and death in a cell model of Oculopharyngeal muscular dystrophy. J Biol Chem 277:12263–12269

    Article  CAS  Google Scholar 

  • Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD (2016) The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genomics 17:559

    Article  Google Scholar 

  • Chai Y, Koppenhafer SL, Bonini NM, Paulson HL (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in Polyglutamine disease. J Neurosci 19:10338–10347

    Article  CAS  Google Scholar 

  • Chen L, Madura K (2014) Degradation of specific nuclear proteins occurs in the cytoplasm in Saccharomyces cerevisiae. Genetics 197:193–197

    Article  Google Scholar 

  • Chughtai ZS, Rassadi R, Matusiewicz N, Stochaj U (2001) Starvation promotes nuclear accumulation of the hsp70 Ssa4p in yeast cells. J Biol Chem 276:20261–20266

    Article  CAS  Google Scholar 

  • Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154

    Article  CAS  Google Scholar 

  • Czubryt MP, Austria JA, Pierce GN (2000) Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, Erk2. J Cell Biol 148:7–16

    Article  CAS  Google Scholar 

  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li H-H, Madamanchi N, Xu W, Neckers L et al (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22:5446–5458

    Article  CAS  Google Scholar 

  • Dai Q, Qian S-B, Li H-H, McDonough H, Borchers C, Huang D, Takayama S, Younger JM, Ren HY, Cyr DM et al (2005) Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. J Biol Chem 280:38673–38681

    Article  CAS  Google Scholar 

  • Daniel S, Bradley G, Longshaw VM, Söti C, Csermely P, Blatch GL (2008) Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding. Biochim Biophys Acta 1783:1003–1014

    Article  CAS  Google Scholar 

  • Gardner RG, Nelson ZW, Gottschling DE (2005) Degradation-mediated protein quality control in the nucleus. Cell 120:803–815

    Article  CAS  Google Scholar 

  • Hageman J, Vos MJ, van Waarde MAWH, Kampinga HH (2007) Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding. J Biol Chem 282:34334–34345

    Article  CAS  Google Scholar 

  • Isaac C, Yang Y, Meier UT (1998) Nopp140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol 142:319–329

    Article  CAS  Google Scholar 

  • Ivanauskiene K, Delbarre E, McGhie JD, Küntziger T, Wong LH, Collas P (2014) The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Res 24:1584–1594

    Article  CAS  Google Scholar 

  • Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009–2018

    Article  CAS  Google Scholar 

  • Jones RD, Gardner RG (2016) Protein quality control in the nucleus. Curr Opin Cell Biol 40:81–89

    Article  CAS  Google Scholar 

  • Kaimal JM, Kandasamy G, Gasser F, Andréasson C (2017) Coordinated Hsp110 and Hsp104 activities power protein disaggregation in Saccharomyces cerevisiae. Mol Cell Biol 37:e00027

    Article  CAS  Google Scholar 

  • Kodiha M, Chu A, Matusiewicz N, Stochaj U (2004) Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ 11:862–874

    Article  CAS  Google Scholar 

  • Kose S, Furuta M, Imamoto N (2012) Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage. Cell 149:578–589

    Article  CAS  Google Scholar 

  • Kriegenburg F, Jakopec V, Poulsen EG, Nielsen SV, Roguev A, Krogan N, Gordon C, Fleig U, Hartmann-Petersen R (2014) A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genet 10:e1004140

    Article  Google Scholar 

  • Lafarga M, Berciano MT, Pena E, Mayo I, Castaño JG, Bohmann D, Rodrigues JP, Tavanez JP, Carmo-Fonseca M (2002) Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. Mol Biol Cell 13:2771–2782

    Article  CAS  Google Scholar 

  • Lees MJ, Peet DJ, Whitelaw ML (2003) Defining the role for XAP2 in stabilization of the dioxin receptor. J Biol Chem 278:35878–35888

    Article  CAS  Google Scholar 

  • Li X, Huang M, Zheng H, Wang Y, Ren F, Shang Y, Zhai Y, Irwin DM, Shi Y, Chen D et al (2008) CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J Cell Biol 181:959–972

    Article  CAS  Google Scholar 

  • Melchior F, Gerace L (1995) Mechanisms of nuclear protein import. Curr Opin Cell Biol 7:310–318

    Article  CAS  Google Scholar 

  • Michaud S, Lavoie S, Guimond M-O, Tanguay RM (2008) The nuclear localization of Drosophila Hsp27 is dependent on a monopartite arginine-rich NLS and is uncoupled from its association to nuclear speckles. Biochim Biophys Acta BBA - Mol Cell Res 1783:1200–1210

    Article  CAS  Google Scholar 

  • Morimoto M, Boerkoel CF (2013) The role of nuclear bodies in gene expression and disease. Biology 2:976–1033

    Article  Google Scholar 

  • Nath SR, Lieberman AP (2017) The Ubiquitination, disaggregation and proteasomal degradation machineries in Polyglutamine diseases. Front Mol Neurosci 10:78

    Article  Google Scholar 

  • Nielsen SV, Poulsen EG, Rebula CA, Hartmann-Petersen R (2014) Protein quality control in the nucleus. Biomolecules 9:646–661

    Article  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  CAS  Google Scholar 

  • Quan X, Rassadi R, Rabie B, Matusiewicz N, Stochaj U (2004) Regulated nuclear accumulation of the yeast hsp70 Ssa4p in ethanol-stressed cells is mediated by the N-terminal domain, requires the nuclear carrier Nmd5p and protein kinase C. FASEB J 18:899–901

    Article  CAS  Google Scholar 

  • Raimer AC, Gray KM, Matera AG (2016) SMN - a chaperone for nuclear RNP social occasions? RNA Biol 14:701–711

    Article  Google Scholar 

  • Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B (2012) Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 31:4221–4235

    Article  CAS  Google Scholar 

  • Ronnebaum SM, Wu Y, McDonough H, Patterson C (2013) The ubiquitin ligase CHIP prevents SirT6 degradation through noncanonical Ubiquitination. Mol Cell Biol 33:4461–4472

    Article  CAS  Google Scholar 

  • Sampuda KM, Riley M, Boyd L (2017) Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans. BMC Cell Biol 18:18

    Article  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    Article  CAS  Google Scholar 

  • Shang Y, Zhao X, Xu X, Xin H, Li X, Zhai Y, He D, Jia B, Chen W, Chang Z (2009) CHIP functions an E3 ubiquitin ligase of Runx1. Biochem Biophys Res Commun 386:242–246

    Article  CAS  Google Scholar 

  • Shibata Y, Morimoto RI (2014) How the nucleus copes with proteotoxic stress. Curr Biol 24:R463–R474

    Article  CAS  Google Scholar 

  • Stenoien DL, Cummings CJ, Adams HP, Mancini MG, Patel K, DeMartino GN, Marcelli M, Weigel NL, Mancini MA (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8:731–741

    Article  CAS  Google Scholar 

  • Tkach J, Glover J (2008) Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells. Traffic 9:39–56

    Article  CAS  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261

    Article  CAS  Google Scholar 

  • Tsuneoka M, Mekada E (1992) Degradation of a nuclear-localized protein in mammalian COS cells, using Escherichia coli beta-galactosidase as a model protein. J Biol Chem 267:9107–9111

    CAS  PubMed  Google Scholar 

  • Udan-Johns M, Bengoechea R, Bell S, Shao J, Diamond MI, True HL, Weihl CC, Baloh RH (2014) Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Hum Mol Genet 23:157–170

    Article  CAS  Google Scholar 

  • Van den IJssel P, Wheelock R, Prescott A, Russell P, Quinlan RA (2003) Nuclear speckle localisation of the small heat shock protein alpha B-crystallin and its inhibition by the R120G cardiomyopathy-linked mutation. Exp Cell Res 287:249–261

    Article  Google Scholar 

  • Vos MJ, Kanon B, Kampinga HH (2009) HSPB7 is a SC35 speckle resident small heat shock protein. Biochim Biophys Acta 1793:1343–1353

    Article  CAS  Google Scholar 

  • Walter GM, Smith MC, Wisén S, Basrur V, Elenitoba-Johnson KSJ, Duennwald ML, Kumar A, Gestwicki JE (2011) Ordered assembly of heat shock proteins, Hsp26, Hsp70, Hsp90, and Hsp104, on expanded Polyglutamine fragments revealed by chemical probes. J Biol Chem 286:40486–40493

    Article  CAS  Google Scholar 

  • Weis K (2003) Regulating access to the genome: Nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  CAS  Google Scholar 

  • Yasuda Y, Miyamoto Y, Saiwaki T, Yoneda Y (2006) Mechanism of the stress-induced collapse of the ran distribution. Exp Cell Res 312:512–520

    Article  CAS  Google Scholar 

  • Yokom AL, Gates S, Jackrel ME, Mack KL, Su M, Shorter J, Southworth DR (2016) Spiral architecture of the Hsp104 disaggregase reveals the structural basis for polypeptide translocation. Nat Struct Mol Biol 23:830–837

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the community of researchers whose excellent work has brought us to our current understanding of the stress response. We have tried to site the current research regarding the nuclear stress response and we apologize to any researchers whose work might not have been included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Boyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boyd, L., Sampuda, K.M. (2018). Molecular Chaperones and the Nuclear Response to Stress. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins and Stress. Heat Shock Proteins, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-90725-3_1

Download citation

Publish with us

Policies and ethics