Skip to main content

Redundant Adaptive Robust Tracking for Active Satellite

  • Chapter
  • First Online:
Non-Cooperative Target Tracking, Fusion and Control

Part of the book series: Information Fusion and Data Science ((IFDS))

  • 1122 Accesses

Abstract

In this chapter, a switched H robust filtering method is discussed and applied into a type of noncooperative target tracking problem, named active satellite tracking. To describe the orbital relative motion, a state model based on differential orbital elements (DOE) and a measurement model using unbiased converted measurements (UCM) are established first. Then, the switched H robust filter to be presented is followed, which we called the redundant adaptive robust extended Kalman filter (RAREKF). The filtering method has a redundancy to system uncertainties such as modeling errors and disturbances, so that the unnecessary loss of filtering optimality, that is, conservativeness of the traditional H filtering, can be improved remarkably. Through theoretical analysis and numerical simulation, it is verified that RAREKF can achieve better tracking performance than other compared typical filters. Additionally, an error index function considering both tracking model and filtering algorithm is also presented for evaluating the overall tracking method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfriend K, Yan H (2005) Evaluation and comparison of relative motion theories. J Guid Control Dyn 28(2):254–261

    Article  Google Scholar 

  2. Busse F, How J (2002) Real-time experimental demonstration of precise decentralized relative navigation for formation flying spacecraft. In: AIAA guidance, navigation, and control conference and exhibit, p 5003

    Google Scholar 

  3. Culp R (1984) Satellite-to-satellite orbit determination using minimum, discrete range and range-rate data only. In: Astrodynamics conference, p 2030

    Google Scholar 

  4. Duan Z, Han C, Li XR (2004) Comments on” unbiased converted measurements for tracking”. IEEE Trans Aerosp Electron Syst 40(4):1374

    Google Scholar 

  5. Dunham JB, Long AC, Sielski HM, Preiss KA (1983) Onboard orbit estimation with tracking and data relay satellite system data. J Guid Control Dyn 6(4):292–301

    Article  Google Scholar 

  6. Fang BT (1979) Satellite-to-satellite tracking orbit determination. J Guid Control Dyn 2(1):57–64

    Article  MathSciNet  Google Scholar 

  7. Gim DW, Alfriend KT (2003) State transition matrix of relative motion for the perturbed noncircular reference orbit. J Guid Control Dyn 26(6):956–971

    Article  Google Scholar 

  8. Gurfil P, Mishne D (2007) Cyclic spacecraft formations: relative motion control using line-of-sight measurements only. J Guid Control Dyn 30(1):214–226

    Article  Google Scholar 

  9. Hablani H (2003) Autonomous navigation, guidance, attitude determination and control for spacecraft rendezvous in a circular orbit. In: AIAA guidance, navigation, and control conference and exhibit, p 5355

    Google Scholar 

  10. Hablani HB (2009) Autonomous inertial relative navigation with sight-line-stabilized sensors for spacecraft rendezvous. J Guid Control Dyn 32(1):172–183

    Article  Google Scholar 

  11. Junkins JL, Akella MR, Alfrined KT (1996) Non-gaussian error propagation in orbital mechanics. Adv Astronaut Sci 92, 283–298

    Google Scholar 

  12. Kawase S (1990) Intersatellite tracking methods for clustered geostationary satellites. IEEE Trans Aerosp Electron Syst 26(3):469–474

    Article  Google Scholar 

  13. Lane CM, Axelrad P (2006) Formation design in eccentric orbits using linearized equations of relative motion. J Guid Control Dyn 29(1):146–160

    Article  Google Scholar 

  14. Lee S, Schutz BE, PAM Abusali (2004) Hybrid precise orbit determination strategy by global position system tracking. J Spacecr Rocket 41(6):997–1009

    Article  Google Scholar 

  15. Li Y (2010) Autonomous follow-up tracking and control of noncooperative space target. Ph.D. Dissertation, Shanghai Jiao Tong University

    Google Scholar 

  16. Li YK, Jing ZL, Hu SQ (2009) Transient relative model based kinematical parameter estimation for orbital maneuvering target. Control Decis 24(7):1059–1064

    Google Scholar 

  17. Li Y, Jing Z, Hu S (2010) Redundant adaptive robust tracking of active satellite and error evaluation. IET Control Theory Appl 4(11):2539–2553

    Article  MathSciNet  Google Scholar 

  18. Longbin M, Xiaoquan S, Yiyu Z, Kang SZ, Bar-Shalom Y (1998) Unbiased converted measurements for tracking. IEEE Trans Aerosp Electron Syst 34(3):1023–1027

    Google Scholar 

  19. Markley F (1984) Autonomous navigation using landmark and intersatellite data. In: Astrodynamics conference, p 1987

    Google Scholar 

  20. Mohiuddin S, Psiaki ML (2007) High-altitude satellite relative navigation using carrier-phase differential global positioning system techniques. J Guid Control Dynam 30(5):1427–1436

    Article  Google Scholar 

  21. Psiaki ML (1999) Autonomous orbit determination for two spacecraft from relative position measurements. J Guid Control Dynam 22(2):305–312

    Article  MathSciNet  Google Scholar 

  22. Psiaki ML, Mohiuddin S (2007) Modeling, analysis, and simulation of gps carrier phase for spacecraft relative navigation. J Guid Control Dynam 30(6):1628–1639

    Article  Google Scholar 

  23. Reif K, Gunther S, Yaz E, Unbehauen R (1999) Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans Autom Control 44(4):714–728

    Article  MathSciNet  Google Scholar 

  24. Seo J, Yu MJ, Park CG, Lee JG (2006) An extended robust h filter for nonlinear constrained uncertain systems. IEEE Trans Signal Process 54(11):4471–4475

    Article  Google Scholar 

  25. Subbarao K, McDonald J (2005) Multi-sensor fusion based relative navigation for synchronization and capture of free floating spacecraft. In: AIAA guidance, navigation, and control conference and exhibit, p 5858

    Google Scholar 

  26. Sun D, Zhou F, Jun Z (2004) Relative navigation based on ukf for multiple spacecraft formation flying. In: AIAA guidance, navigation, and control conference and exhibit, p 5137

    Google Scholar 

  27. Woffinden DC, Geller DK (2007) Relative angles-only navigation and pose estimation for autonomous orbital rendezvous. J Guid Control Dynam 30(5):1455–1469

    Article  Google Scholar 

  28. Wu SC, Yunck TP, Thornton CL (1991) Reduced-dynamic technique for precise orbit determination of low earth satellites. J Guid Control Dynam 14(1):24–30

    Article  Google Scholar 

  29. Xiong K, Zhang H, Liu L (2008) Adaptive robust extended Kalman filter for nonlinear stochastic systems. IET Control Theory Appl 2(3):239–250

    Article  MathSciNet  Google Scholar 

  30. Yu KK, Watson N, Arrillaga J (2005) An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking. IEEE Trans Power Delivery 20(2):1577–1584

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by China Natural Science Foundation (No. 60775022 and No. 60674107).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jing, Z., Pan, H., Li, Y., Dong, P. (2018). Redundant Adaptive Robust Tracking for Active Satellite. In: Non-Cooperative Target Tracking, Fusion and Control. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-90716-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90716-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90715-4

  • Online ISBN: 978-3-319-90716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics