Skip to main content

Simultaneous Visual Recognition and Tracking Based on Joint Decision and Estimation

  • Chapter
  • First Online:
Non-Cooperative Target Tracking, Fusion and Control

Part of the book series: Information Fusion and Data Science ((IFDS))

  • 1141 Accesses

Abstract

Visual target tracking and recognition have been increasingly important in video surveillance. Conventional works deal with tracking and recognition as separate steps, whereas tracking and recognition are closely interrelated and can help each other potentially and significantly. To tackle this problem, based on the joint decision and estimation (JDE) model which guarantees the general decision (recognition) and estimation (tracking) arriving at the global optimization, a simultaneous visual recognition and tracking method is provided. Besides, the structured sparse representation (SSR) model shows great efficiency and robustness in exploiting both holistic and local information of the target appearance. We show that constructing the appearance model with SSR can improve the performance of the proposed algorithm. Then, the contribution of each test candidate is considered into the learning procedure by a kernel function. Furthermore, the new joint weights of the kernel function provide flexibility with appearance changes and thus robustness to the dynamic scene. The experimental results demonstrate that the proposed method performs well in terms of accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  2. Bai T, Li Y (2014) Robust visual tracking using flexible structured sparse representation. IEEE Trans Ind Inf 10(1):538–547

    Article  Google Scholar 

  3. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  4. Bhaskar H (2012) Integrated human target detection, identification and tracking for surveillance applications. In: 6th IEEE international conference intelligent systems (IS). IEEE, New York, pp 467–475

    Google Scholar 

  5. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  MathSciNet  Google Scholar 

  6. Conaire CÓ, O’Connor NE, Smeaton A (2008) Thermo-visual feature fusion for object tracking using multiple spatiogram trackers. Mach Vis Appl 19(5–6):483–494

    Article  Google Scholar 

  7. Eldar YC, Kuppinger P, Bolcskei H (2010) Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process 58(6):3042–3054

    Article  MathSciNet  Google Scholar 

  8. Fan J, Shen X, Wu Y (2013) What are we tracking: a unified approach of tracking and recognition. IEEE Trans Image Process 22(2):549–560

    Article  MathSciNet  Google Scholar 

  9. Gong J, Fan G, Yu L, Havlicek JP, Chen D (2012) Joint view-identity manifold for target tracking and recognition. In: 19th IEEE international conference on image processing (ICIP). IEEE, New York, pp 1357–1360

    Google Scholar 

  10. Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, Torr PH (2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109

    Article  Google Scholar 

  11. Jiang N, Liu W, Wu Y (2011) Learning adaptive metric for robust visual tracking. IEEE Trans Image Process 20(8):2288–2300

    Article  MathSciNet  Google Scholar 

  12. Kim M, Kumar S, Pavlovic V, Rowley H (2008) Face tracking and recognition with visual constraints in real-world videos. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 1–8

    Google Scholar 

  13. Kwon J, Lee KM (2010) Visual tracking decomposition. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 1269–1276

    Google Scholar 

  14. Lee KC, Kriegman D (2005) Online learning of probabilistic appearance manifolds for video-based recognition and tracking. In: IEEE Computer Society conference on computer vision and pattern recognition (CVPR), vol 1. IEEE, New York, pp 852–859

    Google Scholar 

  15. Lee KC, Ho J, Yang MH, Kriegman D (2005) Visual tracking and recognition using probabilistic appearance manifolds. Comput Vis Image Underst 99(3), 303–331

    Article  Google Scholar 

  16. Li XR (2007) Optimal Bayes joint decision and estimation. In: 10th International conference on information fusion. IEEE, New York, pp 1–8

    Google Scholar 

  17. Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 1305–1312

    Google Scholar 

  18. Liu Y, Li XR (2011) Recursive joint decision and estimation based on generalized Bayes risk. In: Proceedings of the 14th international conference on information fusion. IEEE, New York, pp 1–8

    Google Scholar 

  19. Liwicki S, Zafeiriou S, Tzimiropoulos G, Pantic M (2012) Efficient online subspace learning with an indefinite kernel for visual tracking and recognition. IEEE Trans Neural Netw Learn Syst 23(10):1624–1636

    Article  Google Scholar 

  20. Lu WL, Ting JA, Little JJ, Murphy KP (2013) Learning to track and identify players from broadcast sports videos. IEEE Trans Pattern Anal Mach Intell 35(7):1704–1716

    Article  Google Scholar 

  21. Luo M, Sun F, Liu H (2013) Hierarchical structured sparse representation for t–s fuzzy systems identification. IEEE Trans Fuzzy Syst 21(6):1032–1043

    Article  Google Scholar 

  22. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  23. Mei X, Zhou SK, Wu H (2006) Integrated detection, tracking and recognition for ir video-based vehicle classification. In: IEEE international conference on acoustics, speech and signal processing, vol 5. IEEE, New York, pp 745–748

    Google Scholar 

  24. Pentland A, Moghaddam B, Starner T et al (1994) View-based and modular eigenspaces for face recognition. In: IEEE Computer Society conference on computer vision and pattern recognition (CVPR), vol 94, pp 84–91

    Google Scholar 

  25. Pinson R, Howard R, Heaton A (2008) Orbital express advanced video guidance sensor: ground testing, flight results and comparisons. In: AIAA guidance, navigation and control conference and exhibit, p 7318

    Google Scholar 

  26. Rauhut H (2007) Random sampling of sparse trigonometric polynomials. Appl Comput Harmon Anal 22(1):16–42

    Article  MathSciNet  Google Scholar 

  27. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  28. Scholkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45(11):2758–2765

    Article  Google Scholar 

  29. Sheng G, Yang W, Yu L, Sun H (2012) Cluster structured sparse representation for high resolution satellite image classification. In: IEEE 11th international conference on signal processing (ICSP), vol 1. IEEE, New York, pp 693–696

    Google Scholar 

  30. Tang C, Ou Y, Jiang G, Xie Q, Xu Y (2012) Hand tracking and pose recognition via depth and color information. In: IEEE international conference on robotics and biomimetics (ROBIO). IEEE, New York, pp 1104–1109

    Google Scholar 

  31. Tzimiropoulos G, Zafeiriou S, Pantic M (2011) Sparse representations of image gradient orientations for visual recognition and tracking. In: IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW). IEEE, New York, pp 26–33

    Google Scholar 

  32. Wang C, Wang Y, Zhang Z, Wang Y (2013) Face tracking and recognition via incremental local sparse representation. In: Seventh international conference on image and graphics (ICIG). IEEE, New York, pp 493–498

    Google Scholar 

  33. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  34. Yamamoto T, Kataoka H, Hayashi M, Aoki Y, Oshima K, Tanabiki M (2013) Multiple players tracking and identification using group detection and player number recognition in sports video. In: 39th Annual conference of the IEEE industrial electronics society (ECON). IEEE, New York, pp 2442–2446

    Google Scholar 

  35. Yun X, Zhongliang J (2016) Kernel joint visual tracking and recognition based on structured sparse representation. Neurocomputing 193:181–192

    Article  Google Scholar 

  36. Zhang CL (2013) Research on visual tracking methods based on joint decision from multiple regions. Ph.D. thesis, Shanghai Jiao Tong University

    Google Scholar 

  37. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, New York, pp 2042–2049

    Google Scholar 

  38. Zhang K, Zhang L, Yang MH (2013) Real-time object tracking via online discriminative feature selection. IEEE Trans. Image Process 22(12):4664–4677

    Article  MathSciNet  Google Scholar 

  39. Zhang K, Zhang L, Yang MH (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  40. Zhang K, Zhang L, Liu Q, Zhang D, Yang MH (2014) Fast visual tracking via dense spatio-temporal context learning. In: European conference on computer vision (ECCV). Springer, New York, pp 127–141

    Google Scholar 

  41. Zhou SK, Chellappa R, Moghaddam B (2004) Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans Image Process 13(11):1491–1506

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61175028, 61365009) and the Ph.D. Programs Foundation of Ministry of Education of China (Grant Nos. 20090073110045).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jing, Z., Pan, H., Li, Y., Dong, P. (2018). Simultaneous Visual Recognition and Tracking Based on Joint Decision and Estimation. In: Non-Cooperative Target Tracking, Fusion and Control. Information Fusion and Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-90716-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90716-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90715-4

  • Online ISBN: 978-3-319-90716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics