Skip to main content

Breeding for Disease Resistance in Ornamentals

  • Chapter
  • First Online:

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 11))

Abstract

A wide variety of plant species are cultivated for ornamental use as cut flowers, pot and garden plants. The variety of species goes hand in hand with an equally large diversity of problems that are caused by plant pathogens during cultivation and after sale. Improved disease resistance is therefore often a high priority on the wish list of ornamental plant breeders. For food crops, huge efforts are made to develop plant pathology research and breeding. Tools such as bioassays for the screening of parent and offspring plants, biotechnological tools, or other disease resistance-oriented approaches result in more resistant cultivars. For ornamentals, however, these techniques and resources have found only limited application.

Here we offer an overview of disease resistance breeding in ornamental plants. The examples given for specific ornamental crops are primarily based on scientific literature. We also include the practical experience and opinion of commercial breeders to provide insight into common and applied breeding practices. Specific plant-pathogen cases are presented, including Xanthomonas axonopodis pv. dieffenbachiae in Anthurium andreanum, Phytophthora plurivora and Calonectria pauciramosa in azalea (Rhododendron simsii), Calonectria pseudonaviculata and C. henricotiae in Buxus, Fusarium oxysporum f.sp. dianthi in Dianthus caryophyllus, Puccinia horiana in Chrysanthemum x morifolium, and Fusarium oxysporum f.sp. lilii in lily (Lilium).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anaïs G, Darrasse A, Prior P (2000) Breeding anthuriums (Anthurium andreanum L.) for resistance to bacterial blight caused by Xanthomonas campestris pv. dieffenbachiae. Acta Hortic 508:135–140

    Article  Google Scholar 

  • Arens P, Bijman P, Tang N, Shahin A, van Tuyl JM (2012) Mapping of disease resistance in ornamentals: a long haul. Acta Hortic 953:231–237

    Article  Google Scholar 

  • Armijo G, Schlechter R, Agurto M, Muñoz D, Nuñez C, Arce-Johnson P (2016) Grapevine pathogenic microorganisms: understanding infection strategies and host response scenarios. Front Plant Sci 7:382

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold DL, Jackson RW (2011) Bacterial genomes: evolution of pathogenicity. Curr Opin Plant Biol 14:385–391

    Article  PubMed  CAS  Google Scholar 

  • Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicate gene. Biotechnol Lett 33:1249–1255

    Article  PubMed  CAS  Google Scholar 

  • Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34:1073–1090

    Article  PubMed  Google Scholar 

  • Baayen RP, Sparnaaij LD, Jansen J, Niemann GJ (1991) Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Neth J Plant Pathol 97:73–86

    Article  Google Scholar 

  • Backhaus GF (1994a) Cylindrocladium scoparium causing wilt disease in Rhododendron and azalea. Acta Hortic 364:163–166

    Article  Google Scholar 

  • Backhaus GF (1994b) Phytophthora citricola (Sawada) – cause of an important shoot rot of Rhododendron and azalea. Acta Hortic 364:145–154

    Article  Google Scholar 

  • Bakhshaie M, Khosravi S, Azadi P, Bagheri H, Van Tuyl JM (2016) Biotechnological advances in Lilium. Plant Cell Rep 35:1799–1826

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yephet Y, Reuven M, Mor Y (1993) Selection methods for determining resistance of carnation cultivars to Fusarium oxysporum f.sp. dianthi. Plant Pathol 42:517–521

    Article  Google Scholar 

  • Ben-Yephet Y, Reuven M, Zveibil A, Shtienberg D (1996) Effects of abiotic variables on the response of carnation cultivars to Fusarium oxysporum f.sp.dianthi. Plant Pathol 45:98–105

    Article  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Bolley HL (1901) Flax wilt and flax sick soil. Norht Dakota Experiment Station Bulletin 50

    Google Scholar 

  • Brugliera F, Kalc-Wright G, Hyland C, Webb L, Herbert S, Sheehan B, Mason JG (2000) Improvement of Fusarium wilt tolerance in carnations expressing chitinase. Int Plant Mol Biol Rep 18:522–529

    Google Scholar 

  • CABI/EPPO (2017) n° 236 https://www.cabi.org/isc/datasheet/45806. Accessed 04 Mar 2018

  • Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng ZJ, Sun FM, Liu WQ, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang MN, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  CAS  PubMed  Google Scholar 

  • Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14:279–288

    Article  PubMed  CAS  Google Scholar 

  • Clarke JL, Spetz C, Haugslien S, Xing S, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep 27:1027–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collinge DB, Jorgensen HJL, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    Article  PubMed  CAS  Google Scholar 

  • De Backer M, Alaei Shah Anar Vanar H, Van Bockstaele E, Roldàn-Ruiz I, van der Lee T, Maes M, Heungens K (2011) Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. Eur J Plant Pathol 130:325–338

    Article  Google Scholar 

  • De Cáceres González FFN, Davey MR, Sanchez EC, Wilson ZA (2015) Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Rep 34:1201–1209

    Article  CAS  Google Scholar 

  • De Jong J, Rademaker W (1986) The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 3:945–952

    Article  Google Scholar 

  • De Keyser E, De Riek J, Heungens K (2008) Development of supporting techniques for pot azalea (Rhododendron simsii hybrids) breeding focused on plant quality, disease resistance and enlargement of the assortment. Acta Hortic 766:361–366

    Article  Google Scholar 

  • Debener T (2009) Current strategies and future prospects of resistance breeding in ornamentals. Acta Hortic 836:125–130

    Article  Google Scholar 

  • Debener T, Byrne D (2014) Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci 228:107–117

    Article  CAS  PubMed  Google Scholar 

  • Demmink JF, Baayen RP, Sparnaaij LD (1989) Evaluation of the virulence of races 1, 2 and 4 of Fusarium oxysporum f. sp. dianthi in carnation. Euphytica 42:55–63

    Article  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2001) Transformation of roses with genes for antifungal proteins. Acta Hortic 547:27–33

    Article  CAS  Google Scholar 

  • Dohm A, Ludwig C, Schilling D, Debener T (2002) Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Hortic 572:105–111

    Article  CAS  Google Scholar 

  • Elibox W, Umaharan P (2007) The inheritance of systematic resistance to the bacterial blight pathogen (Xanthomonas axonopodis pv. dieffenbachiae) in Anthurium andreanum. Sci Hortic 115:76–81

    Article  CAS  Google Scholar 

  • Elibox W, Umaharan P (2008a) A quantitative screening method for the detection of foliar resistance to Xanthomonas axonopodis pv. dieffenbachiae in anthurium. Eur J Plant Pathol 121:35–42

    Article  Google Scholar 

  • Elibox W, Umaharan P (2008b) Genetic basis of resistance to systemic infection by Xanthomonas axonopodis pv. dieffenbachiae in Anthurium. Phytopathology 98:421–426

    Article  PubMed  CAS  Google Scholar 

  • Elibox W, Umaharan P (2010) Inheritance of resistance to foliar infection by Xanthomonas axonopodis pv. dieffenbachiae in Anthurium. Plant Dis 94:1243–1247

    Article  PubMed  Google Scholar 

  • EU Fact Sheet (2015) Emergency control measures by species. https://ec.europa.eu/food/plant/plant_health_biosecurity/legislation/emergency_measures/xylella-fastidiosa_en. Accessed 04 Mar 2018

  • Fawke S, Doumane M, Schornack S (2015) Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 79:263–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Galletti R, De Lorenzo G, Ferrari S (2009) Host-derived signals activate plant innate immunity. Plant Signal Behav 4:33–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganci M, Benson DM, Ivors K (2013) Susceptibility of commercial boxwood varieties to boxwood blight (boxwood cultivars with tolerance to box blight). North Carolina Coop. Ext., Plant Pathology, Raleigh. https://plantpathology.ces.ncsu.edu/wp-content/uploads/2013/05/final-Cult-trials-summary-2013.pdf?fwd=no. Accessed 04 Mar 2018

  • Gehesquiere B (2014) Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: Molecular characterization, epidemiology, host resistance and fungicide control. PhD dissertation, Ghent University

    Google Scholar 

  • Gehesquière B, Rys F, Maes M, Gobin B, Van Huylenbroweck J, Heungens K (2012) Genotypic and phenotypic variation in Cylindrocladium buxicola. (Abstr) Commun Agric Appl Biol Sci 77:95–96

    Google Scholar 

  • Gehesquière B, Crouch JA, Marra RE, Van Poucke K, Rys F, Maes M, Gobin B, Höfte M, Heungens K (2016) Characterization and taxonomic reassessment of the box blight pathogen Calonectria pseudonaviculata, introducing Calonectria henricotiae sp. nov. Plant Pathol 65:37–52

    Article  CAS  Google Scholar 

  • Growns DJ (2015) Phenotypic recurrent selection for disease tolerance in Anigozanthos spp. L. Acta Hortic 1097:101–106

    Article  Google Scholar 

  • Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Olsen RT (2015) Effective bioassays for evaluating boxwood blight susceptibility using detached stem inoculations. Hortic Sci 50:268–271

    Google Scholar 

  • Han Q, Chen R, Yang Y, Cui X, Ge F, Chen C, Liu D (2016) A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum. Sci Hortic 198:370–378

    Article  CAS  Google Scholar 

  • Hardham (2005) Mol Plant Pathol 6:589–604

    Article  PubMed  CAS  Google Scholar 

  • He JP, Chen FD, Chen SM, Fang WM, Miao HB, Luo HL (2009) Transformation of Lycoris longituba agglutinin gene to cut chrysanthemum and identification of aphid resistance in the transgenic plants. Acta Bot Boreal Occident Sin 29:2318–2325

    CAS  Google Scholar 

  • Hennebert GL (1973) Botrytis and Botrytis-like genera. Persoonia 7:183–204

    Google Scholar 

  • Henricot B, Culham A (2002) Cylindrocladium buxicola, a new species affecting Buxus spp., and its phylogenetic status. Mycologia 94:980–997

    Article  PubMed  CAS  Google Scholar 

  • Henricot B, Gorton C, Denton G, Denton J (2008) Studies on the control of Cylindrocladium buxicola using fungicides and host resistance. Plant Dis 92:1273–1279

    Article  CAS  PubMed  Google Scholar 

  • Höfte M (2015) Basal and induced disease resistance mechanisms in ornamentals. Acta Hortic 1087:473–478

    Article  Google Scholar 

  • Jarvis WR (1977) Botryotinia and Botrytis species: taxonomy, physiology and pathogenicity, Monograph no. 15. Canadian Department of Agriculture, Ottawa

    Google Scholar 

  • Jepson P, Arakelyan I (2017) Exploring public perceptions of solutions to tree diseases in the UK: implications for policy-makers. Environ Sci Pol 76:70–77

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen IH (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–152

    Article  Google Scholar 

  • Jung T, Cooke DEL, Blaschke H, Duncan JM, Oßwald W (1999) Phytophthora quercina sp. nov., causing root rot of European oaks. Mycol Res 103:785–798

    Article  Google Scholar 

  • Kamo K, Gera A, Cohen J, Hammond J, Blowers A, Smith F, Van Eck J (2005) Transgenic gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep 23:654–663

    Article  PubMed  CAS  Google Scholar 

  • Kamo K, Jordan R, Guaragna MA, Hsu HT, Ueng P (2010) Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Rep 29:695–704

    Article  PubMed  CAS  Google Scholar 

  • Kamo K, Aebig J, Guaragna MA, James C, Hsu HT, Jordan R (2012) Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus. Plant Cell Tissue Organ Cult 110:13–21

    Article  CAS  Google Scholar 

  • Kamo K, Lakshman D, Bauchan G, Rajasekaran K, Cary J, Jaynes J (2015) Expression of a synthetic antimicrobial peptide, D4E1, in Gladiolus plants for resistance to Fusarium oxysporum f. sp gladioli. Plant Cell Tissue Organ Cult 121:459–467

    Article  CAS  Google Scholar 

  • Kamo K, Lakshman D, Pandey R, Guaragna MA, Okubara P, Rajasekaran K, Cary J, Jordan R (2016) Resistance to Fusarium oxysporum f. sp gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes. Plant Cell Tissue Organ Cult 124:541–553

    Article  CAS  Google Scholar 

  • Kardos JH, Robacker CD, Dirr MA, Rinehart TA (2009) Production and verification of Hydrangea macrophylla × H. angustipetala hybrids. Hortscience 44:1534–1537

    Google Scholar 

  • Kaufmann H, Qiu X, Wehmeyer J, Debener T (2012) Isolation, molecular characterization, and mapping of four rose MLO orthologs. Front Plant Sci 3:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellerhals M, Szalatnay D, Hunziker K, Duffy B, Nybom H, Ahmadi-Afzadi M, Höfer M, Richter K, Lateur M (2012) European pome fruit genetic resources evaluated for disease resistance. Trees 26:179–189

    Article  Google Scholar 

  • Kim YS, Lim S, Yoda H, Choi YE, Sano H (2011) Simultaneous activation of salicylate production and fungal resistance in transgenic Chrysanthemum producing caffeine. Plant Signal Behav 6:409–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koning-Boucoiran CF, Gitonga VW, Yan Z, Dolstra O, van der Linden CG, van der Schoot J, Uenk GE, Verlinden K, Smulders MJ, Krens FA, Maliepaard C (2012) The mode of inheritance in tetraploid cut roses. Theor Appl Genet 125:591–607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korbin M (2006) Assessment of gerbera plants genetically modified with TSWV nucleocapsid gene. J Fruit Ornam Plant Res 14:85–93

    CAS  Google Scholar 

  • Kuehnle AR, Fujii T, Chen FC, Alvarez A, Sugii N, Fukui R, Aragon SL (2004a) Peptide biocides for engineering bacterial blight tolerance and susceptibility in cut flower anthurium. Hortscience 39:1327–1331

    CAS  Google Scholar 

  • Kuehnle AR, Fujii T, Mudalige R, Alvarez A (2004b) Gene and genome mélange in breeding of Anthurium and Dendrobium orchid. Acta Hortic 651:115–122

    Article  CAS  Google Scholar 

  • Kumar S, Raj SK, Sharma AK, Varma HN (2012) Genetic transformation and development of cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Sci Hortic 134:40–45

    Article  CAS  Google Scholar 

  • LaMondia JA (2015) Management of Calonectria pseudonaviculata in boxwood with fungicides and less susceptible host species and varieties. Plant Dis 99:363–369

    Article  CAS  PubMed  Google Scholar 

  • Leach JE, Leung H, Tisserat NA (2014) Plant disease and resistance. In: Van Alfen NK (ed) Encyclopedia of agriculture and food systems, vol 4. New York, pp 360–374

    Chapter  Google Scholar 

  • Lentola A, David A, Abdul-Sasa A, Tapparo A, Goulson D, Hill EM (2017) Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects. Environ Pollut 228:297–304

    Article  PubMed  CAS  Google Scholar 

  • Li X, Gasic K, Cammue B, Broekaert W, Korban SS (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226–232

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Trigiano R, Reed S, Rinehart T, Spiers J (2009) Assessment of resistance components of bigleaf hydrangeas (Hydrangea macrophylla) to Erysiphe polygoni in vitro. Can J Plant Pathol 31:348–355

    Article  Google Scholar 

  • Liao LJ, Pan IC, Chan YL, Hsu YH, Chen WH, Chan MT (2004) Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium Mosaic Virus is a manifestation of RNA-mediated resistance. Mol Breed 13:229–242

    Article  CAS  Google Scholar 

  • Liu WL, Wu LF, Wu HZ, Zheng SX, Wang JH, Liu FH (2011) Correlation of saponin content and Fusarium resistance in hybrids from different ploidy levels of Lilium oriental. Sci Hortic 129:849–853

    Article  CAS  Google Scholar 

  • Luypaert G, Van Huylenbroeck J, De Riek J, De Clercq P (2014) Screening for broad mite susceptibility in Rhododendron simsii hybrids. J Plant Dis Protect 121:260–269

    Article  Google Scholar 

  • Marchant R, Davey MR, Lucas JA, Lamb CJ, Dixon RA, Power JB (1998) Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol Breed 4:187–194

    Article  CAS  Google Scholar 

  • Menda N, Strickler SR, Edwards JD, Bombarely A, Dunham DM, Martin GB, Mejia L, Hutton SF, Havey MJ, Maxwell DP, Mueller LA (2014) Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins. BMC Plant Biol 14:287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao H, Jiang B, Chen S, Zhang S, Chen F, Fang W, Teng N, Guan Z (2010) Isolation of a gibberellin 20-oxidasec DNA from and characterization of its expression in chrysanthemum. Plant Breed 129:707–714

    Article  CAS  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Mitteau Y (1987) Breeding of new carnations resistant to Fusarium oxysporum. Acta Hortic 216:359–366

    Article  Google Scholar 

  • Mork EK (2011) Disease resistance in ornamental plants – transformation of Symphyotrichum novi-belgii with powdery mildew resistance genes. PhD dissertation, Aarhus University

    Google Scholar 

  • Motaung TE, Saitoh H, Tsilo TJ (2017) Large-scale molecular genetic analysis in plant-pathogenic fungi: a decade of genome-wide functional analysis. Mol Plant Pathol 18:754–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • NAKtuinbouw (2018a) https://www.naktuinbouw.com/test/resistance-tests-vegetable-crop-varieties?_ga=2.100665095.724202317.1519139659-93668408.1515697636. Accessed 04 Mar 2018

  • NAKtuinbouw (2018b) https://www.naktuinbouw.com/test/resistance-tests-ornamental-crop-varieties. Accessed 04 Mar 2018

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  PubMed  CAS  Google Scholar 

  • Ortega F, Lopez-Vizcon C (2012) Application of molecular marker-assisted selection (MAS) for disease resistance in a practical potato breeding programme. Potato Res 55:1–13

    Article  CAS  Google Scholar 

  • Orton WA (1918) Breeding for disease resistance in plants. Am J Bot 5:279–283

    Article  Google Scholar 

  • Oßwald W, Fleischmann F, Rigling D, Coelho AC, Cravador A, Diez J, Dalio RJ, Horta Jung M, Pfanz H, Robin C, Sipos G, Solla A, Cech T, Chambery A, Diamandis S, Hansen E, Jung T, Orlikowski LB, Parke J, Prospero S, Werres S (2014) Strategies of attack and defence in woody plant–Phytophthora interactions. For Pathol 44:169–190

    Article  Google Scholar 

  • Pavan S, Jacobsen E, Visser RGF, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    Article  PubMed  Google Scholar 

  • Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC, Fournet S, Durel CE, Delourme R (2017) Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci 8:1838

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tissue Organ Cult 112:101–108

    Article  CAS  Google Scholar 

  • Prados-Ligero AM, Basallote-Urba MJ, Lopze-Herrera CJ, Melero-Vara JM (2007) Evaluation of susceptibility of carnation cultivars to fusarium wilt and determination of Fusarium oxysporum f.sp. dianthi races in Southwest Spain. Hortscience 42:596–599

    Google Scholar 

  • Proefstation voor de Bloemisterij in Nederland (1984) Overzicht van het onderzoek over schimmelvaatziekten bij anjers in de periode 1939-1983. Report 23

    Google Scholar 

  • Rao J, Liu D, Zhang N, He H, Ge F, Chen C (2014) Differential gene expression in incompatible interaction between Lilium regale Wilson and Fusarium oxysporum f. sp. lilii revealed by combined SSH and microarray analysis. Mol Biol 48:802–812

    Article  CAS  Google Scholar 

  • Ridley G (1998) New plant fungus found in Auckland box hedges (Buxus). Forest Health News 77:1

    Google Scholar 

  • Rispail N, Rubiales D (2016) Genome-wide identification and comparison of legume MLO gene family. Sci Rep 6:32673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rytkönen A, Lilja A, Vercauteren A, Sirkiä A, Parikka P, Soukainen M, Hantula J (2012) Identity and potential pathogenicity of Phytophthora species found on symptomatic Rhododendron plants in a Finnish nursery. Can J Plant Pathol 34:255–267

    Article  Google Scholar 

  • Sen S, Kumar S, Ghani M, Thakur M (2013) Agrobacterium mediated genetic transformation of chrysanthemum (Dendranthema grandiflora Tzvelev) with rice chitinase gene for improved resistance against Septoria obesa. Plant Pathol J 12:1–10

    Article  CAS  Google Scholar 

  • Shahin A, Arens P, Van Heusden AW, Van Der Linden G, Van Kaauwen M, Khan N, Schouten HJ, Van De Weg WE, Visser RGF, Van Tuyl JM (2011) Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130:372–382

    Article  CAS  Google Scholar 

  • Shakoor N, Lee S, Mockler TC (2017) High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opin Plant Biol 38:184–192

    Article  PubMed  Google Scholar 

  • Sharma R, Messar Y (2017) Transgenics in ornamental crops: creating novelties in economically important cut flowers. Curr Sci 113:43–52

    Article  Google Scholar 

  • Sherman JM, Moyer JW, Daub ME (1998) Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis 82:407–414

    Article  PubMed  Google Scholar 

  • Shinoyama H, Mochizuki A, Komano M, Nomura Y, Nagai T (2003) Insect resistance in transgenic chrysanthemum (Dendranthema x grandiflorum (Ramat) Kitamura) by the introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Breed Sci 53:359–367

    Article  CAS  Google Scholar 

  • Shinoyama H, Mochizuki A, Nomura Y, Kamada H (2008) Environmental risk assessment of genetically modified chrysanthemums containing a modified cry1Ab gene from Bacillus thuringiensis. Plant Biotechnol 25:17–29

    Article  CAS  Google Scholar 

  • Shinoyama H, Sano T, Saito M, Ezura H, Aida R, Nomura Y et al (2012) Induction of male sterility in transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) by expression of a mutated ethylene receptor gene, Cm-ETR1/H69A, and the stability of this sterility at varying growth temperatures. Mol Breed 29:285–295

    Article  CAS  Google Scholar 

  • Shinoyama H, Mitsuhara I, Ichikawa H, Kato K, Mochizuki A (2015) Transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance. Acta Hortic 1087:485–497

    Article  Google Scholar 

  • Shishkoff N, Daughtrey M, Aker S, Olsen RT (2015) Evaluating boxwood susceptibility to Calonectria pseudonaviculata using cuttings from the National Boxwood Collection. Plant Health Prog 16:11–15

    Article  Google Scholar 

  • Skirvin DJ, De Courcy Williams ME, Fenlon JS, Sunderland KD (2002) Modelling the effects of plant species on biocontrol effectiveness in ornamental nursery crops. J Appl Ecol 39:469–480

    Article  Google Scholar 

  • Sparnaaij LD, Demmink JF (1976) Breeding for resistance to Phialophora cinerescens (Wr.) Van Beyma in glasshouse carnations (Dianthus caryophyllus L.). Euphytica 25:329–338

    Article  Google Scholar 

  • Staats M, van Baarlen P, van Kan JAL (2004) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22:333–346

    Article  PubMed  CAS  Google Scholar 

  • Straathof TP, Löffler HJM (1994) Screening for Fusarium resistance in seedling populations of Asiatic hybrid lily. Euphytica 78:43–51

    Google Scholar 

  • Straathof TP, Löffler HJM, Linfield CA, Roebroeck EJA (1997) Breeding for resistance to Fusarium oxysporum in flower bulbs. Acta Hortic 430:477–486

    Article  Google Scholar 

  • Takatsua Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hortic 82:113–123

    Article  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J, Zeng S, Winarto B, Lennon AM, Jaufeerally-Fakim Y, Christopher DA (2015) Genetic transformation and molecular research in Anthurium: progress and prospects. Plant Cell Tissue Organ Cult 123:205–219

    Article  CAS  Google Scholar 

  • Thakur M, Sharma D, Sharma S (2002) In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f.sp. dianthi. Plant Cell Rep 20:825–828

    Article  CAS  Google Scholar 

  • Uchneat MS, Zhigilei A, Craig R (1999) Differential response to foliar infection with Botrytis cinerea within the genus Pelargonium. J Am Soc Hortic Sci 124:76–80

    Google Scholar 

  • van den Bulk RW (1991) Application of cell and tissue culture and in vitro selection for disease resistance breeding. Euphytica 56:269–285

    Article  Google Scholar 

  • Van Heusden AW, Jongerius MC, Van Tuyl JM, Straathof TP, Mes JJ (2002) Molecular assisted breeding for disease resistance in lily. Acta Hortic 572:131–138

    Article  Google Scholar 

  • Van Huylenbroeck J, Calsyn E, De Keyser E, Luypaert G (2015) Breeding for biotic stress resistance in Rhododendron simsii. Acta Hortic 1104:375–379

    Article  Google Scholar 

  • van Kan JAL, Shaw MW, Grant-Downton RT (2014) Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Mol Plant Pathol 15:957–961

    PubMed  PubMed Central  Google Scholar 

  • Van Laere K, Hermans D, Leus L, Van Huylenbroeck J (2011) Genetic relationships in European and Asiatic Buxus species based on AFLP markers, genome sizes and chromosome numbers. Plant Syst Evol 293:1–11

    Article  Google Scholar 

  • Van Laere K, Hermans D, Leus L, Van Huylenbroeck J (2015) Interspecific hybridisation within Buxus spp. Sci Hortic 185:139–144

    Article  Google Scholar 

  • van Schie CCN, Takken FLW (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581

    Article  PubMed  CAS  Google Scholar 

  • van Wordragen MF, Honée G, Dons HJM (1993) Insect resistant chrysanthemum calluses by introduction of a Bacillus thuringiensis crystal protein gene. Transgenic Res 2:170–180

    Article  PubMed  Google Scholar 

  • Vieira P, Wantoch S, Lilley CJ, Chitwood DJ, Atkinson HJ, Kamo K (2015) Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum ‘Nellie White’. Transgenic Res 24:421–432

    Article  PubMed  CAS  Google Scholar 

  • Vyska M, Cunniffe N, Gilligan C (2016) Trade-off between disease resistance and crop yield: a landscape-scale mathematical modelling perspective. J R Soc Interface 13:20160451

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong JS, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publication to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu G, Chen S, Chen F (2010) Transgenic chrysanthemum plants expressing a harpin (Xoo) gene demonstrate induced resistance to alternaria leaf spot and accelerated development. Russ J Plant Physiol 57:548–553

    Article  CAS  Google Scholar 

  • Xu G, Liu Y, Chen S, Chen F (2011) Potential structural and biochemical mechanisms of compositae wild species resistance to Alternaria tenuissima. Russ J Plant Physiol 58:491–497

    Article  CAS  Google Scholar 

  • Zeller W (1979) Resistance and resistance breeding in ornamentals. EPPO Bull 9:35–44

    Article  Google Scholar 

  • Zhang NN, Liu DQ, Zheng W, He H, Ji B, Han Q, Ge F, Chen CY (2014a) A bZIP transcription factor, LrbZIP1, is involved in Lilium regale Wilson defense repsonses against Fusarium oxysporym f.sp. lilii. Genes Genom 36:789–798

    Article  CAS  Google Scholar 

  • Zhang YP, Jiang S, Qu SP, Yang XM, Wang XN, Ma LL, Wu LL, He YQ, Wang JH (2014b) In vitro selection for Fusarium resistant oriental lily mutants using culture filtrate of the fungal agent. Acta Hortic 1027:205–212

    Article  Google Scholar 

  • Zhang N, Guan R, Yang Y, Bai Z, Ge F, Liu D (2017) Isolation and characterization of a Fusarium oxysporum-resistant gene LrGLP1 from Lilium regale Wilson. In Vitro Cell Dev Biol Plant 53:461–468

    Article  CAS  Google Scholar 

  • Zhu S, Li Y, Vossen JH, Visser RGF, Jacobsen E (2012) Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res 21:89–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Miriam Levenson, Kurt Heungens, and Johan Van Huylenbroeck for the useful remarks about the structure of the manuscript, fair questions that needed an answer, and helpful English corrections. Kurt Heungens is also thanked for the helpful input on fine tuning some phytopathological issues.

The author also wants to express her gratitude to the breeding companies and ornamental plant breeders who gave valuable information and an insight on their experiences with disease resistance breeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leen Leus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leus, L. (2018). Breeding for Disease Resistance in Ornamentals. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-90698-0_5

Download citation

Publish with us

Policies and ethics