Skip to main content

Engineering of Human-Induced Pluripotent Stem Cells for Precise Disease Modeling

  • Chapter
  • First Online:
Stem Cell Genetics for Biomedical Research
  • 819 Accesses

Abstract

Stem cell technologies and gene editing techniques are two of the most promising recent developments in biomedicine. The ability to reprogram common human cells into induced pluripotent stem cells (hiPSCs) and turn them into the cells of interest has already become a powerful research tool, thus providing a unique platform for disease studies. In combination with the use of designer nucleases approach to repair or to introduce disease-causing mutations, both are valuable in developing personalized disease models . This chapter provides an overview on designer nucleases-based gene editing in hiPSCs, describing the principles of CRISPR/Cas systems along with consecutive methodological steps such as nucleases selection, isolation, and genotyping of modified hiPSC clones with emphasis on the crucial role of isogenic cell lines in disease modeling. Moreover, the production of rare or complex genotypes in patient cell lines requires efficient and streamlined gene editing technologies. However, precise genome editing applications rely on infrequent homology-directed repair (HDR), with the abundant nonhomologous end joining (NHEJ) formed indels presenting a barrier to achieving high rates of precise sequence modification. The methods presented here are supported by theoretical framework to allow for the incorporation of inevitable improvements to achieve either higher rates of gene editing by promotion of HDR over NHEJ or application of different CRISPR/Cas platforms for robust and multiplex gene editing, toward decoding of neurodevelopmental as well as for modeling of late onset disorders by fast-forwarding the biological clock. Due to easy in theory but laborious and inefficient in practice, the precise and efficient genome editing in hiPSCs could be only achieved by the proper combination of the described methods in the process. This eventually would lead to generation of wide range of disease models for decoding of sporadic, polygenic, undiagnosed, and rare disorders using the adequate experimental design following appropriate gene editing toolbox selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91:6064–6068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci 103:16370–16375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wood AJ, Lo TW, Zeitler B, et al (2011) Targeted genome editing across species using ZFNs and TALENs. Science (80- ) 333:307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Beumer KJ, Trautman JK, Bozas A, Liu J-L, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci 105:19821–19826

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science (80- ) 300:764

    Article  PubMed  CAS  Google Scholar 

  8. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  PubMed  CAS  Google Scholar 

  9. Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. DeKelver RC, Choi VM, Moehle EA et al (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 20:1133–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hockemeyer D, Jaenisch R (2010) Gene targeting in human pluripotent cells. Cold Spring Harb Symp Quant Biol 75:201–209

    Article  PubMed  CAS  Google Scholar 

  12. Hockemeyer D, Soldner F, Beard C et al (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lombardo A, Genovese P, Beausejour CM et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306

    Article  PubMed  CAS  Google Scholar 

  14. Sexton AN, Regalado SG, Lai CS, Cost GJ, O’Neil CM, Urnov FD, Gregory PD, Jaenisch R, Collins K, Hockemeyer D (2014) Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes Dev 28:1885–1899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Soldner F, Laganière J, Cheng AW et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset parkinson point mutations. Cell 146:318–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zou J, Maeder ML, Mali P et al (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5:97–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science (80- ) 339:823–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Xue X, Papusha A, Choi K et al (2016) Differential regulation of the anti-crossover and replication fork regression activities of mph1 by mte1. Genes Dev 30:687–699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cong L, Ran FA, Cox D, et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science (80- ) 339:819–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/cas-mediated genome engineering. Cell 153:910–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2013:e00471

    Google Scholar 

  23. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fischer K, Kraner-Scheiber S, Petersen B et al (2016) Efficient production of multi-modified pigs for xenotransplantation by “combineering”, gene stacking and gene editing. Sci Rep 6:29081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Grzybek M, Golonko A, Walczak M, Lisowski P (2017) Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiol Dis 99:84–120

    Article  PubMed  CAS  Google Scholar 

  26. Hockemeyer D, Jaenisch R (2016) Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18:573–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yusa K, Rashid ST, Strick-Marchand H et al (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478:391–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chung K, Wallace J, Kim SY et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ambasudhan R, Ryan SD, Dolatabadi N et al (2013) XIsogenic hman iPSC prkinson’s mdel shows ntrosative stress-induced dsfunction in MEF2-PGC1α tanscription. Cell 155:1351–1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC (2014) N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gurumurthy CB, Grati M, Ohtsuka M, Schilit SLP, Quadros RM, Liu XZ (2016) CRISPR: a versatile tool for both forward and reverse genetics research. Hum Genet 135:971–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mianné J, Chessum L, Kumar S et al (2016) Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med 8:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nelson CE, Hakim CH, Ousterout DG, et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science (80- ) 351:403–407

    Google Scholar 

  34. Yang Y, Wang L, Bell P et al (2016) A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34:334–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Platt RJ, Chen S, Zhou Y et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T (2016) SsODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Claussnitzer M, Dankel SN, Kim K-H et al (2015) FTO obesity variant circuitry and adipocyte Browning in humans. N Engl J Med 373:895–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Orack JC, Deleidi M, Pitt D, Mahajan K, Nicholas JA, Boster AL, Racke MK, Comabella M, Watanabe F, Imitola J (2015) Concise review: modeling multiple sclerosis with stem cell biological platforms: toward functional validation of cellular and molecular phenotypes in inflammation-induced neurodegeneration. Stem Cells Transl Med 4:252–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Shin JW, Kim K-H, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF, Lee J-M (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25(20):4566–4576. ddw286

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) XOne-step generation of mice carrying reporter and conditional alleles by CRISPR/cas-mediated genome engineering. Cell 154:1370–1379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gilbert LA, Larson MH, Morsut L et al (2013) XCRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. https://doi.org/10.1016/j.cell.2013.06.044

  44. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350

    Article  PubMed  CAS  Google Scholar 

  48. Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW (2014) A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Rep 3:940–947

    Article  CAS  Google Scholar 

  49. Chen S, Sanjana NE, Zheng K et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:1246–1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Peng J, Zhou Y, Zhu S, Wei W (2015) High-throughput screens in mammalian cells using the CRISPR-Cas9 system. FEBS J 282:2089–2096

    Article  PubMed  CAS  Google Scholar 

  51. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23:720–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science (80- ) 343:80–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491

    Article  PubMed  CAS  Google Scholar 

  54. Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, Chang T, Huang H, Lin RJ, Yee JK (2015) Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol 33:175–179

    Article  PubMed  CAS  Google Scholar 

  55. Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–198

    Article  PubMed  CAS  Google Scholar 

  56. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bolukbasi MF, Gupta A, Wolfe SA (2015) Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 13:41–50

    Article  CAS  Google Scholar 

  59. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science (80- ) 351:84–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C (2016) Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther 24:636–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV, Charpentier E (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42:2577–2590

    Article  PubMed  CAS  Google Scholar 

  65. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Fonfara I, Richter H, BratoviÄ M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521

    Article  PubMed  CAS  Google Scholar 

  67. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hirano S, Nishimasu H, Ishitani R, Nureki O (2016) Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol Cell 61:886–894

    Article  PubMed  CAS  Google Scholar 

  69. González F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, Huangfu D (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. DeWitt MA, Corn JE, Carroll D (2017) Genome editing via delivery of Cas9 ribonucleoprotein. Methods 121–122:9–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. elife 3:e04766

    Article  PubMed  PubMed Central  Google Scholar 

  72. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344

    Article  PubMed  CAS  Google Scholar 

  73. Yumlu S, Stumm J, Bashir S, Dreyer AK, Lisowski P, Danner E, Kühn R (2017) Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods 121–122:29–44

    Article  PubMed  CAS  Google Scholar 

  74. Yang L, Guell M, Byrne S et al (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41:9049–9061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8:e1002861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Brinkman EK, Chen T, Amendola M, Van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res https://doi.org/10.1093/nar/gku936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hill JT, Demarest BL, Bisgrove BW, Su YC, Smith M, Yost HJ (2014) Poly peak parser: method and software for identification of unknown indels using sanger sequencing of polymerase chain reaction products. Dev Dyn 243:1632–1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Dehairs J, Talebi A, Cherifi Y, Swinnen JV (2016) CRISP-ID: decoding CRISPR mediated indels by Sanger sequencing. Sci Rep 6:28973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Pinello L, Canver MC, Hoban MD, Orkin SH, Kohn DB, Bauer DE, Yuan G-C (2016) Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34:695–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Boel A, Steyaert W, De Rocker N, Menten B, Callewaert B, De Paepe A, Coucke P, Willaert A (2016) BATCH-GE: Batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep 6:30330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Dodgson JB, Wells RD (1977) Action of single-strand specific nucleases on model DNA Heteroduplexes of defined size and sequence. Biochemistry 16:2374–2379

    Article  PubMed  CAS  Google Scholar 

  82. Bhattacharyya A, Lilley DMJ (1989) The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles). Nucleic Acids Res 17:6821–6840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wagner R, Debbie P, Radman M (1995) Mutation detection using immobilized mismatch binding protein (MutS). Nucleic Acids Res 23:3944–3948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Youil R, Kemper BW, Cotton RG (1995) Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc Natl Acad Sci U S A 92:87–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Howard JT, Ward J, Watson JN, Roux KH (1999) Heteroduplex cleavage analysis using S1 nuclease. BioTechniques 27:18–19

    Article  PubMed  CAS  Google Scholar 

  86. Taylor GR, Deeble J (1999) Enzymatic methods for mutation scanning. Genet Anal Biomol Eng 14:181–186

    Article  CAS  Google Scholar 

  87. Yeung AT, Hattangadi D, Blakesley L, Nicolas E (2005) Enzymatic mutation detection technologies. BioTechniques 38:749–758

    Article  PubMed  CAS  Google Scholar 

  88. Babon JJ, Youil R, Cotton RGH (1995) Improved strategy for mutation detection – a modification to the enzyme mismatch cleavage method. Nucleic Acids Res 23:5082–5084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hadden JM, Déclais AC, Carr SB, Lilley DMJ, Phillips SEV (2007) The structural basis of Holliday junction resolution by T7 endonuclease I. Nature 449:621–624

    Article  PubMed  CAS  Google Scholar 

  90. Freeman ADJ, Déclais AC, Lilley DMJ (2013) The importance of the N-terminus of T7 endonuclease i in the interaction with DNA junctions. J Mol Biol 425:395–410

    Article  PubMed  CAS  Google Scholar 

  91. Déclais AC, Lilley DM (2008) New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin Struct Biol 18:86–95

    Article  PubMed  CAS  Google Scholar 

  92. Mashal RD, Koontz J, Sklar J (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet 9:177–183

    Article  PubMed  CAS  Google Scholar 

  93. Déclais AC, Liu J, Freeman ADJ, Lilley DMJ (2006) Structural recognition between a four-way DNA junction and a resolving enzyme. J Mol Biol 359:1261–1276

    Article  PubMed  CAS  Google Scholar 

  94. Gohlke C, Murchie AI, Lilley DM, Clegg RM (1994) Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 91:11660–11664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Yang B, Wen X, Kodali NS, Oleykowski CA, Miller CG, Kulinski J, Besack D, Yeung JA, Kowalski D, Yeung AT (2000) Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39:3533–3541

    Article  PubMed  CAS  Google Scholar 

  97. Qiu P, Shandilya H, D’Alessio JM, O’Connor K, Durocher J, Gerard GF (2004) Mutation detection using Surveyor™ nuclease. BioTechniques 36:702–707

    Article  PubMed  CAS  Google Scholar 

  98. Voskarides K, Deltas C (2009) Screening for mutations in kidney-related genes using SURVEYOR nuclease for cleavage at heteroduplex mismatches. J Mol Diagn 11:311–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bentley A, Maclennan B, Calvo J, Dearolf CR (2000) Targeted recovery of mutations in drosophila. Genetics 156:1169–1173

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Colbert T (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Coghill EL, Hugill A, Parkinson N, Davison C, Glenister P, Clements S, Hunter J, Cox RD, Brown SDM (2002) A gene-driven approach to the identification of ENU mutants in the mouse. Nat Genet 30:255–256

    Article  PubMed  Google Scholar 

  103. Perry JA (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RHA, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Comai L, Young K, Till BJ et al (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  106. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  107. Geurts AM, Cost GJ, Freyvert Y, et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science (80- ) 325:433

    Google Scholar 

  108. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256

    Article  PubMed  CAS  Google Scholar 

  109. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–150

    Article  PubMed  CAS  Google Scholar 

  110. Tesson L, Usal C, Meq́noret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  PubMed  CAS  Google Scholar 

  111. Isalan M (2012) Zinc-finger nucleases: how to play two good hands. Nat Methods 9:32–34

    Article  CAS  Google Scholar 

  112. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MAFV (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41:e63

    Article  PubMed  CAS  Google Scholar 

  114. Maier DA, Brennan AL, Jiang S et al (2013) Efficient clinical scale gene modification via zinc finger nuclease–targeted disruption of the HIV co-receptor CCR5. Hum Gene Ther 24:245–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Van Rensburg R, Beyer I, Yao XY et al (2013) Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells. Gene Ther 20:201–214

    Article  PubMed  CAS  Google Scholar 

  116. Vouillot L, Thélie A, Pollet N (2015) Comparison of T7E1 and Surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3: Genes|Genomes|Genetics 5:407–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Merkle FT, Eggan K (2013) Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12:656–668

    Article  PubMed  CAS  Google Scholar 

  119. Soldner F, Jaenisch R (2012) iPSC disease modeling. Science (80- ) 338:1155–1156

    Article  PubMed  Google Scholar 

  120. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, Goldmann J, Myers RH, Young RA, Jaenisch R (2016) Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533:95–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Collins FS, Lander ES, Rogers J, Waterson RH (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  CAS  Google Scholar 

  122. Auton A, Abecasis GR, Altshuler DM et al (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  PubMed  CAS  Google Scholar 

  123. Dewey FE, Grove ME, Pan C et al (2014) Clinical interpretation and implications of whole-genome sequencing. JAMA J Am Med Assoc 311:1035–1044

    Article  CAS  Google Scholar 

  124. Mangino M, Cecelja M, Menni C, Tsai PC, Yuan W, Small K, Bell J, Mitchell GF, Chowienczyk P, Spector TD (2016) Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity. J Hypertens 34:79–87

    Article  PubMed  CAS  Google Scholar 

  125. Gerstung M, Pellagatti A, Malcovati L et al (2015) Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nat Commun 6:5901

    Article  PubMed  CAS  Google Scholar 

  126. Saykin AJ, Shen L, Yao X et al (2015) Genetic studies of quantitative MCI and AD phenotypes in ADNI: progress, opportunities, and plans. Alzheimers Dement 11:792–814

    Article  PubMed  PubMed Central  Google Scholar 

  127. Shiraishi Y, Fujimoto A, Furuta M et al (2014) Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers. PLoS One 9:e114263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Piskol R, Ramaswami G, Li JB (2013) Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 93:641–651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Bell S, Peng H, Crapper L, Kolobova I, Maussion G, Vasuta C, Yerko V, Pan Wong T, Ernst C (2017) A rapid pipeline to model rare neurodevelopmental disorders with simultaneous CRISPR/Cas9 gene editing. Stem Cells Transl Med 6:886–896

    Article  PubMed  CAS  Google Scholar 

  130. Zhu Z, González F, Huangfu D (2014) The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods Enzymol 546:215–250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Studer L, Vera E, Cornacchia D (2015) Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell 16:591–600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691–705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Byers B, Cord B, Nguyen HN, Schüle B, Fenno L, Lee PC, Deisseroth K, Langston JW, Pera RR, Palmer TD (2011) SNCA triplication parkinson’s patient’s iPSC-derived DA neurons accumulate α-Synuclein and are susceptible to oxidative stress. PLoS One 6:e26159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Cooper O, Seo H, Andrabi S et al (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4:141ra90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Liu GH, Ding Z, Izpisua Belmonte JC (2012) IPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol 24:765–774

    Article  PubMed  CAS  Google Scholar 

  136. Nguyen HN, Byers B, Cord B et al (2011) LRRK2 mutant iPSC-derived da neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Reinhardt P, Schmid B, Burbulla LF et al (2013) Genetic correction of a lrrk2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 12:354–367

    Article  CAS  PubMed  Google Scholar 

  138. Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31:5970–5976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Young SG, Jung H-J, Lee JM, Fong LG (2014) Nuclear Lamins and neurobiology. Mol Cell Biol 34:2776–2785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Baek JH, Schmidt E, Viceconte N et al (2015) Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Hum Mol Genet 24:1305–1321

    Article  PubMed  CAS  Google Scholar 

  141. Longo VD, Antebi A, Bartke A et al (2015) Interventions to slow aging in humans: are we ready? Aging Cell 14:497–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Huang Y, Myers SJ, Dingledine R (1999) Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 2:867–872

    Article  PubMed  CAS  Google Scholar 

  143. Lu T, Aron L, Zullo J et al (2014) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507:448–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Hitz C, Steuber-Buchberger P, Delic S, Wurst W, Kühn R (2009) Generation of shrna transgenic mice. Methods Mol Biol 530:101–129

    Article  PubMed  CAS  Google Scholar 

  145. Renaud JB, Boix C, Charpentier M et al (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14:2263–2272

    Article  PubMed  CAS  Google Scholar 

  146. Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Sfeir A, De Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science (80- ) 336:593–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hustedt N, Durocher D (2017) The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9

    Article  CAS  Google Scholar 

  149. Corneo B, Wendland RL, Deriano L et al (2007) Rag mutations reveal robust alternative end joining. Nature 449:483–486

    Article  PubMed  CAS  Google Scholar 

  150. Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455

    Article  PubMed  CAS  Google Scholar 

  151. Badie S, Carlos AR, Folio C, Okamoto K, Bouwman P, Jonkers J, Tarsounas M (2015) BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres. EMBO J 34:828–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    Article  PubMed  CAS  Google Scholar 

  153. Sfeir A, Symington LS (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40:701–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Sakuma T, Nakade S, Sakane Y, Suzuki KIT, Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11:118–133

    Article  PubMed  CAS  Google Scholar 

  155. He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B (2016) Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44:e85–e85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Danner E, Bashir S, Yumlu S, Wurst W, Wefers B, Kühn R (2017) Control of gene editing by manipulation of DNA repair mechanisms. Mamm Genome 28:262–274

    Article  PubMed  CAS  Google Scholar 

  158. Suzuki K, Izpisua Belmonte JC (2018) In vivo genome editing via the HITI method as a tool for gene therapy. J Hum Genet 63:157–164

    Article  PubMed  CAS  Google Scholar 

  159. Srivastava M, Nambiar M, Sharma S et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151:1474–1487

    Article  PubMed  CAS  Google Scholar 

  160. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548

    Article  PubMed  CAS  Google Scholar 

  162. Greco GE, Matsumoto Y, Brooks RC, Lu Z, Lieber MR, Tomkinson AE (2016) SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair (Amst) 43:18–23

    Article  CAS  Google Scholar 

  163. Menchon G, Bombarde O, Trivedi M et al (2016) Structure-based virtual ligand screening on the XRCC4/DNA ligase IV Interface. Sci Rep 6:22878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Robert F, Barbeau M, Éthier S, Dostie J, Pelletier J (2015) Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med 7:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Byrum J, Jordan S, Safrany ST, Rodgers W (2004) Visualization of inositol phosphate-dependent mobility of Ku: depletion of the DNA-PK cofactor InsP6 inhibits Ku mobility. Nucleic Acids Res 32:2776–2784

    Article  PubMed  PubMed Central  Google Scholar 

  166. Arras SDM, Fraser JA (2016) Chemical inhibitors of non-homologous end joining increase targeted construct integration in cryptococcus neoformans. PLoS One 11:e0163049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, Mer G, Greenberg RA (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol 20:317–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Xie A, Hartlerode A, Stucki M et al (2007) Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol Cell 28:1045–1057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Yoo E, Kim BU, Seung YL, Chae HC, Chung JH, Lee CH (2005) 53BP1 is associated with replication protein a and is required for RPA2 hyperphosphorylation following DNA damage. Oncogene 24:5423–5430

    Article  PubMed  CAS  Google Scholar 

  170. Orthwein A, Noordermeer SM, Wilson MD et al (2015) A mechanism for the suppression of homologous recombination in G1 cells. Nature 528:422–426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  PubMed  CAS  Google Scholar 

  172. Bashir S, Kühn R (2017) Enhanced precision and efficiency. Nat Biomed Eng 1:856–857

    Article  PubMed  Google Scholar 

  173. Paulsen BS, Mandal PK, Frock RL et al (2017) Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing. Nat Biomed Eng 1:878–888

    Article  PubMed  PubMed Central  Google Scholar 

  174. Richardson CD, Kazane KR, Feng SJ, Bray NL, Schaefer AJ, Floor S, Corn J (2017) CRISPR-Cas9 genome editing in human cells works via The Fanconi Anemia Pathway. DoiOrg 136028

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre, Poland Grant No. 2016/22/M/NZ2/00548. I would like to thank Dr. Ralf Kühn (Max-Delbrück-Centrum für Molekulare Medizin) for invaluable support and guidance in development and application of hiPSC gene editing technologies described in this work. I would like to thank Ms. Aleksandra Golonko (Bialystok University of Technology) for excellent support in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lisowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lisowski, P. (2018). Engineering of Human-Induced Pluripotent Stem Cells for Precise Disease Modeling. In: Delgado-Morales, R. (eds) Stem Cell Genetics for Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-90695-9_15

Download citation

Publish with us

Policies and ethics