Skip to main content

Stem Cells and Cancer

  • Chapter
  • First Online:
Stem Cell Genetics for Biomedical Research

Abstract

The plasticity of cancer stem cells (CSCs) is one of the greatest challenges in cancer therapeutics. CSCs not only foster tumour development, but they also activate mechanisms of tumour immune surveillance evasion, metabolic reprogramming, and metastatic colonization. The clinical significance of CSCs involves their resistance to chemotherapy and their major role in tumour relapse after treatment. Mechanisms that are essential for the induction, maintenance, and survival of CSCs are ambiguous. A deeper understanding of what triggers CSCs, and helps them survive and spread, will provide insight into new treatment strategies in the field of clinical oncology. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

ADC:

Antibody-drug conjugate

ALDH1:

Aldehyde dehydrogenase 1

ALL:

Acute lymphoblastic leukaemia

AML:

Acute myeloid leukaemia

BCL-2:

B-cell lymphoma-2

CML:

Chronic myeloid leukaemia

CSC:

Cancer stem cell

DRP1:

Dynamin-related protein 1

EMT:

Epithelial-mesenchymal transition

ESC:

Embryonic stem cell

GSC:

Glioma stem cell

HIF:

Hypoxia-inducible factor

HNSCC:

Head and neck squamous cell carcinoma

HSC:

Haematopoietic stem cell

iPSC:

Induced pluripotent stem cell

LSC:

Leukemic stem cell

MET:

Mesenchymal-epithelial transition

miRNA:

MicroRNA

mtDNA:

Mitochondrial DNA

OXPHOS:

Oxidative phosphorylation

PKM:

Pyruvate kinase muscle

PDK1:

Pyruvate dehydrogenase kinase 1

ROS:

Reactive oxygen species

TF:

Transcription factor

References

  1. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730

    Article  PubMed  CAS  Google Scholar 

  2. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  3. O’Brien CA, Pollett A, Gallinger S, Dick JE (2006) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106

    Article  PubMed  CAS  Google Scholar 

  4. Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Damjanov I (1993) Teratocarcinoma: neoplastic lessons about normal embryogenesis. Int J Dev Biol 37:39–46

    PubMed  CAS  Google Scholar 

  8. Karsten U, Goletz S (2013) What makes cancer stem cell markers different? Springerplus 2:301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  PubMed  CAS  Google Scholar 

  10. Ghatak S, Misra S, Toole BP (2005) Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 280:8875–8883

    Article  PubMed  CAS  Google Scholar 

  11. Misra S, Toole BP, Ghatak S (2006) Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem 281:34936–34941

    Article  PubMed  CAS  Google Scholar 

  12. Aigner S, Ramos CL, Hafezi-Moghadam A, Lawrence MB, Friederichs J, Altevogt P et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 12:1241–1251

    Article  PubMed  CAS  Google Scholar 

  13. Mizrak D, Brittan M, Alison M (2008) CD133: molecule of the moment. J Pathol 214:3–9

    Article  PubMed  CAS  Google Scholar 

  14. Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA (2012) Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 52:735–746

    Article  PubMed  CAS  Google Scholar 

  15. Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344

    Article  PubMed  CAS  Google Scholar 

  16. Masters JR, Foley CL, Bisson I, Ahmed A (2003) Cancer stem cells. BJU Int 92:661–662

    Article  PubMed  CAS  Google Scholar 

  17. Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A, Gholamin M (2017) Isolation, identification, and characterization of cancer stem cells: a review. J Cell Physiol 232:2008–2018

    Article  PubMed  CAS  Google Scholar 

  18. Moserle L, Ghisi M, Amadori A, Indraccolo S (2010) Side population and cancer stem cells: therapeutic implications. Cancer Lett 288:1–9

    Article  PubMed  CAS  Google Scholar 

  19. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 13:497–512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Song J, Chang I, Chen Z, Kang M, Wang CY (2010) Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One 5:e11456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  22. Goodell MA, McKinney-Freeman S, Camargo FD (2005) Isolation and characterization of side population cells. Methods Mol Biol 290:343–352

    PubMed  Google Scholar 

  23. Feuring-Buske M, Hogge DE (2001) Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(−) progenitor cells from patients with acute myeloid leukemia. Blood 97:3882–3889

    Article  PubMed  CAS  Google Scholar 

  24. Huang FF, Zhang L, Wu DS, Yuan XY, Yu YH, Zhao XL et al (2014) PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PLoS One 9:e88298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jiang Y, Gao H, Liu M, Mao Q (2016) Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma. Am J Cancer Res 6:1890–1905

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A 103:11154–11159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yasuda K, Torigoe T, Morita R, Kuroda T, Takahashi A, Matsuzaki J et al (2013) Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population. PLoS One 8:e68187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Shen G, Shen F, Shi Z, Liu W, Hu W, Zheng X et al (2008) Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cell Dev Biol Anim 44:280–289

    Article  PubMed  CAS  Google Scholar 

  29. Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  PubMed  CAS  Google Scholar 

  30. Nakanishi T, Chumsri S, Khakpour N, Brodie AH, Leyland-Jones B, Hamburger AW et al (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102:815–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cammareri P, Lombardo Y, Francipane MG, Bonventre S, Todaro M, Stassi G (2008) Isolation and culture of colon cancer stem cells. Methods Cell Biol 86:311–324

    Article  PubMed  CAS  Google Scholar 

  33. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162

    Article  PubMed  CAS  Google Scholar 

  34. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  35. Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tonnesen P, Suso EM et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62:1499–1509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rao GH, Liu HM, Li BW, Hao JJ, Yang YL, Wang MR et al (2013) Establishment of a human colorectal cancer cell line P6C with stem cell properties and resistance to chemotherapeutic drugs. Acta Pharmacol Sin 34:793–804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen T, Yang K, Yu J, Meng W, Yuan D, Bi F et al (2012) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 22:248–258

    Article  PubMed  CAS  Google Scholar 

  38. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  PubMed  CAS  Google Scholar 

  39. Gou S, Liu T, Wang C, Yin T, Li K, Yang M et al (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34:429–435

    Article  PubMed  Google Scholar 

  40. Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34:153–161

    Article  PubMed  CAS  Google Scholar 

  41. Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78

    Article  PubMed  CAS  Google Scholar 

  42. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J et al (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7:e1000121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. O'Brien CA, Kreso A, Jamieson CH (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16:3113–3120

    Article  PubMed  CAS  Google Scholar 

  45. Carrasco E, Alvarez PJ, Prados J, Melguizo C, Rama AR, Aranega A et al (2014) Cancer stem cells and their implication in breast cancer. Eur J Clin Investig 44:678–687

    Article  CAS  Google Scholar 

  46. Jackson M, Hassiotou F, Nowak A (2015) Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 36:177–185

    Article  PubMed  CAS  Google Scholar 

  47. Botchkina G (2013) Colon cancer stem cells--from basic to clinical application. Cancer Lett 338:127–140

    Article  PubMed  CAS  Google Scholar 

  48. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  49. Tseng JY, Yang CY, Yang SH, Lin JK, Lin CH, Jiang JK (2015) Circulating CD133(+)/ESA(+) cells in colorectal cancer patients. J Surg Res 199:362–370

    Article  PubMed  Google Scholar 

  50. Cervello I, Mirantes C, Santamaria X, Dolcet X, Matias-Guiu X, Simon C (2011) Stem cells in human endometrium and endometrial carcinoma. Int J Gynecol Pathol 30:317–327

    Article  PubMed  Google Scholar 

  51. Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG et al (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15:4299–4311

    Article  PubMed  CAS  Google Scholar 

  52. Li Z (2013) CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Qian X, Tan C, Wang F, Yang B, Ge Y, Guan Z et al (2016) Esophageal cancer stem cells and implications for future therapeutics. Onco Targets Ther 9:2247–2254

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Suva ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM et al (2009) Identification of cancer stem cells in Ewing's sarcoma. Cancer Res 69:1776–1781

    Article  PubMed  CAS  Google Scholar 

  55. Krishnamurthy S, Nor JE (2012) Head and neck cancer stem cells. J Dent Res 91:334–340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973–978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22:3696–3705

    Article  PubMed  CAS  Google Scholar 

  58. Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C et al (2012) Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30:1714–1725

    Article  PubMed  CAS  Google Scholar 

  59. Lindgren D, Bostrom AK, Nilsson K, Hansson J, Sjolund J, Moller C et al (2011) Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol 178:828–837

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, Ferrando U et al (2006) CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 169:2223–2235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lim SD, Young AN, Paner GP, Amin MB (2008) Prognostic role of CD44 cell adhesion molecule expression in primary and metastatic renal cell carcinoma: a clinicopathologic study of 125 cases. Virchows Arch 452:49–55

    Article  PubMed  CAS  Google Scholar 

  62. Sun JH, Luo Q, Liu LL, Song GB (2016) Liver cancer stem cell markers: progression and therapeutic implications. World J Gastroenterol 22:3547–3557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lundin A, Driscoll B (2013) Lung cancer stem cells: progress and prospects. Cancer Lett 338:89–93

    Article  PubMed  CAS  Google Scholar 

  64. Lang D, Mascarenhas JB, Shea CR (2013) Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol 31:166–178

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhan Q, Wang C, Ngai S (2013) Ovarian cancer stem cells: a new target for cancer therapy. Biomed Res Int 2013:916819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  69. Zhan HX, Xu JW, Wu D, Zhang TP, Hu SY (2015) Pancreatic cancer stem cells: new insight into a stubborn disease. Cancer Lett 357:429–437

    Article  PubMed  CAS  Google Scholar 

  70. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  71. Sharpe B, Beresford M, Bowen R, Mitchard J, Chalmers AD (2013) Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev 9:721–730

    Article  CAS  Google Scholar 

  72. Brungs D, Aghmesheh M, Vine KL, Becker TM, Carolan MG, Ranson M (2016) Gastric cancer stem cells: evidence, potential markers, and clinical implications. J Gastroenterol 51:313–326

    Article  PubMed  CAS  Google Scholar 

  73. Nagayama Y, Shimamura M, Mitsutake N (2016) Cancer stem cells in the thyroid. Front Endocrinol 7:20

    Article  Google Scholar 

  74. Shimamura M, Nagayama Y, Matsuse M, Yamashita S, Mitsutake N (2014) Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines. Endocr J 61:481–490

    Article  PubMed  CAS  Google Scholar 

  75. Horton SJ, Huntly BJ (2012) Recent advances in acute myeloid leukemia stem cell biology. Haematologica 97:966–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68:190–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104:2919–2925

    Article  PubMed  CAS  Google Scholar 

  78. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11:630–637

    Article  PubMed  CAS  Google Scholar 

  79. Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109:674–682

    Article  PubMed  CAS  Google Scholar 

  80. Singh D, Minz AP, Sahoo SK (2017) Nanomedicine-mediated drug targeting of cancer stem cells. Drug Discov Today 22(6):952–959. https://doi.org/10.1016/j.drudis.2017.04.005

    Article  PubMed  CAS  Google Scholar 

  81. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890

    Article  PubMed  CAS  Google Scholar 

  83. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  CAS  PubMed  Google Scholar 

  84. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    Article  PubMed  CAS  Google Scholar 

  85. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291

    Article  PubMed  CAS  Google Scholar 

  86. Vermeulen L, de Sousa e Melo F, Richel DJ, Medema JP (2012) The developing cancer stem-cell model: clinical challenges and opportunities. Lancet Oncol 13:e83–e89

    Article  PubMed  Google Scholar 

  87. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5:738

    Article  PubMed  CAS  Google Scholar 

  88. Ashkenazi R, Gentry SN, Jackson TL (2008) Pathways to tumorigenesis—modeling mutation acquisition in stem cells and their progeny. Neoplasia 10:1170–1182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al (2004) Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    Article  PubMed  CAS  Google Scholar 

  90. Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23:1124–1134

    Article  PubMed  CAS  Google Scholar 

  91. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

  92. Abollo-Jimenez F, Jimenez R, Cobaleda C (2010) Physiological cellular reprogramming and cancer. Semin Cancer Biol 20:98–106

    Article  PubMed  CAS  Google Scholar 

  93. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17:413–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Aguilar-Gallardo C, Simon C (2013) Cells, stem cells, and cancer stem cells. Semin Reprod Med 31:5–13

    Article  PubMed  CAS  Google Scholar 

  95. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  96. Jilkine A, Gutenkunst RN (2014) Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers. PLoS Comput Biol 10:e1003481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 15:244–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Iglesias JM, Gumuzio J, Martin AG (2017) Linking pluripotency reprogramming and cancer. Stem Cells Transl Med 6:335–339

    Article  PubMed  Google Scholar 

  99. Yamada Y, Haga H (2014) Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Stem Cells Transl Med:1182–1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648

    Article  PubMed  CAS  Google Scholar 

  102. Maki N, Martinson J, Nishimura O, Tarui H, Meller J, Tsonis PA et al (2010) Expression profiles during dedifferentiation in newt lens regeneration revealed by expressed sequence tags. Mol Vis 16:72–78

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Thitoff AR, Call MK, Del Rio-Tsonis K, Tsonis PA. Unique expression patterns of the retinoblastoma (Rb) gene in intact and lens regeneration-undergoing newt eyes. Anat Rec A: Discov Mol Cell Evol Biol 2003; 271A:185–188

    Article  CAS  Google Scholar 

  104. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ et al (2014) Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15:605–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S et al (2010) Conversion of adult pancreatic [agr]-cells to [bgr]-cells after extreme [bgr]-cell loss. Nature 464:1149–1154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS et al (2016) A predictive computational framework for direct reprogramming between human cell types. Nat Genet 48:331–335

    Article  PubMed  CAS  Google Scholar 

  107. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    Article  PubMed  CAS  Google Scholar 

  108. Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S et al (2012) Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 122:2911–2915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Li H, Wolfe A, Septer S, Edwards G, Zhong X, Abdulkarim AB et al (2012) Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int 32:38–47

    Article  PubMed  CAS  Google Scholar 

  110. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  PubMed  CAS  Google Scholar 

  111. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  PubMed  CAS  Google Scholar 

  112. Yin J, Oh YT, Kim J-Y, Kim SS, Choi E, Kim TH et al (2017) Transglutaminase 2 inhibition reverses mesenchymal transdifferentiation of glioma stem cells by regulating C/EBPβ signaling. Cancer Res 77:4973–4984

    Google Scholar 

  113. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 154:8–20

    Article  CAS  Google Scholar 

  114. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720

    Article  PubMed  CAS  Google Scholar 

  115. Puisieux A, Brabletz T, Caramel J (2014) Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16:488–494

    Article  PubMed  CAS  Google Scholar 

  116. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H et al (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527:525–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong STC et al (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527:472–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  119. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E et al (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525:256–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Huang RYJ, Wong MK, Tan TZ, Kuay KT, Ng AHC, Chung VY et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis 4:e915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C et al (2016) Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep 14:2281–2288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Celià-Terrassa T, Kang Y (2016) Distinctive properties of metastasis-initiating cells. Genes Dev 30:892–908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Nieto MA, Huang Ruby Y-J, Jackson Rebecca A, Thiery Jean P (2016) EMT: 2016. Cell 166:21–45

    Article  PubMed  CAS  Google Scholar 

  124. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al (2000) The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  125. Sánchez-Tilló E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A et al (2011) Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res 1:897–912

    PubMed  PubMed Central  Google Scholar 

  126. Martin A, Cano A (2010) Tumorigenesis: Twist1 links EMT to self-renewal. Nat Cell Biol 12:924–925

    Article  PubMed  CAS  Google Scholar 

  127. Yang M-H, Hsu DS-S, Wang H-W, Wang H-J, Lan H-Y, Yang W-H et al (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12:982–992

    Article  PubMed  CAS  Google Scholar 

  128. Chaffer Christine L, Marjanovic Nemanja D, Lee T, Bell G, Kleer Celina G, Reinhardt F et al (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:61–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Pang R, Law WL, Chu ACY, Poon JT, Lam CSC, Chow AKM et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6:603–615

    Article  PubMed  CAS  Google Scholar 

  131. Chen Y-C, Chen Y-W, Hsu H-S, Tseng L-M, Huang P-I, Lu K-H et al (2009) Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 385:307–313

    Article  PubMed  CAS  Google Scholar 

  132. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Beck B, Lapouge G, Rorive S, Drogat B, Desaedelaere K, Delafaille S et al (2015) Different levels of Twist1 regulate skin tumor initiation, stemness, and progression. Cell Stem Cell 16:67–79

    Article  PubMed  CAS  Google Scholar 

  134. Hao J, Zhang Y, Deng M, Ye R, Zhao S, Wang Y et al (2014) MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer 135:1019–1027

    Article  PubMed  CAS  Google Scholar 

  135. Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, Gangaraju VK et al (2017) A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 19:1105–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  PubMed  CAS  Google Scholar 

  137. Chao C-H, Chang C-C, Wu M-J, Ko H-W, Wang D, Hung M-C et al (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124:3093–3106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. George JT, Jolly MK, Xu J, Somarelli J, Levine H (2017) Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res 77:6415–6428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  140. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H (2017) EMT and MET: necessary or permissive for metastasis? Mol Oncol 11:755–769

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tian X-J, Zhang H, Xing J (2013) Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys J 105:1079–1089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Celia-Terrassa T, Meca-Cortes O, Mateo F, Martinez de Paz A, Rubio N, Arnal-Estape A et al (2012) Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest 122:1849–1868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in Cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ocaña Oscar H, Córcoles R, Fabra Á, Moreno-Bueno G, Acloque H, Vega S et al (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–724

    Article  PubMed  CAS  Google Scholar 

  146. Schmidt Johanna M, Panzilius E, Bartsch Harald S, Irmler M, Beckers J, Kari V et al (2015) Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep 10:131–139

    Article  PubMed  CAS  Google Scholar 

  147. Tsai Jeff H, Donaher Joana L, Murphy Danielle A, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22:725–736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Tran HD, Luitel K, Kim M, Zhang K, Longmore GD, Tran DD (2014) Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res 74:6330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Drasin DJ, Guarnieri AL, Neelakantan D, Kim J, Cabrera JH, Wang CA et al (2015) TWIST1-induced microRNA-424 reversibly drives mesenchymal programming while inhibiting tumor initiation. Cancer Res 75:1908–1921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Nandy SB, Orozco A, Lopez-Valdez R, Roberts R, Subramani R, Arumugam A et al (2017) Glucose insult elicits hyperactivation of cancer stem cells through miR-424-cdc42-prdm14 signalling axis. Br J Cancer 117:1665–1675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  151. Tsuji T, Ibaragi S, G-f H (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–7139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Varga J, Greten FR (2017) Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol 19:1133–1141

    Article  PubMed  CAS  Google Scholar 

  153. Harner-Foreman N, Vadakekolathu J, Laversin SA, Mathieu MG, Reeder S, Pockley AG et al (2017) A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics. Sci Rep 7:40633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  155. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP (2016) Cancer stem cell metabolism. Breast Cancer Res 18:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Guppy M, Greiner E, Brand K (1993) The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212:95–99

    Article  PubMed  CAS  Google Scholar 

  158. Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L et al (2014) Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. elife 3:e03342

    Article  PubMed Central  CAS  Google Scholar 

  159. Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  PubMed  CAS  Google Scholar 

  160. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186

    Article  PubMed  CAS  Google Scholar 

  161. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  PubMed  CAS  Google Scholar 

  162. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  CAS  Google Scholar 

  163. Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG et al (2015) PDK1-dependent metabolic reprogramming dictates metastatic potential in breast Cancer. Cell Metab 22:577–589

    Article  PubMed  CAS  Google Scholar 

  164. Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT et al (2017) Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37:1062–1074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Pavlova Natalya N, Thompson Craig B (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Weber GF (2016) Time and circumstances: cancer cell metabolism at various stages of disease progression. Front Oncol 6

    Google Scholar 

  167. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  PubMed  CAS  Google Scholar 

  168. Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22:168–177

    Article  PubMed  CAS  Google Scholar 

  169. Wu J, Ocampo A, Belmonte JCI (2016) Cellular metabolism and induced pluripotency. Cell 166:1371–1385

    Article  PubMed  CAS  Google Scholar 

  170. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Hawkins KE, Joy S, Delhove JM, Kotiadis VN, Fernandez E, Fitzpatrick LM et al (2016) NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming. Cell Rep 14:1883–1891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Kida YS, Kawamura T, Wei Z, Sogo T, Jacinto S, Shigeno A et al (2015) ERRs mediate a metabolic switch required for somatic cell reprogramming to pluripotency. Cell Stem Cell 16:547–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Sone M, Morone N, Nakamura T, Tanaka A, Okita K, Woltjen K et al (2017) Hybrid cellular metabolism coordinated by Zic3 and Esrrb synergistically enhances induction of naive pluripotency. Cell Metab 25:1103–17.e6

    Article  PubMed  CAS  Google Scholar 

  174. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5th edn. Section 16.1, Glycolysis is an energy-conversion pathway in many organisms, W H Freeman, New York. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22593/

  175. Stryer JMB, John LT, Lubert S (2002) The citric acid cycle. Biochemistry. W H Freeman, New York

    Google Scholar 

  176. Stryer JMB, John LT, Lubert S (2002) Oxidative phosphorylation. Biochemistry. W H Freeman, New York

    Google Scholar 

  177. Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  178. San-Millán I, Brooks GA (2017) Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis 38:119–133

    PubMed  Google Scholar 

  179. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Yuan S, Lu Y, Yang J, Chen G, Kim S, Feng L et al (2015) Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism. Stem Cell Res Ther 6:198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Paola M, Alvaro M-H, Miriam G-A, Maricruz A-R, Julio R-L, Paulina C-H (2017) Mitochondrial dynamics and cancer. Tumor Biol 39:1010428317698391

    Google Scholar 

  182. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 28:721–733

    Article  PubMed  CAS  Google Scholar 

  183. Prieto J, Torres J (2017) Mitochondrial dynamics: in cell reprogramming as it is in cancer. Stem Cells Int 2017:11

    Article  Google Scholar 

  184. Zhang J, Zhang Y, Wu W, Wang F, Liu X, Shui G et al (2017) Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis 8:e3151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW et al (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824

    Article  PubMed  CAS  Google Scholar 

  186. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W et al (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18:501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N, Iqbal S et al (2015) Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M et al (2015) MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metab 22:590–605

    Article  PubMed  CAS  Google Scholar 

  189. Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM et al (2016) NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab 23:206–219

    Article  PubMed  CAS  Google Scholar 

  190. Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 108:16062–16067

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M et al (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis 5:e1336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Feng W, Gentles A, Nair RV, Huang M, Lin Y, Lee CY et al (2014) Targeting unique metabolic properties of breast tumor initiating cells. Stem Cells 32:1734–1745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Lee K-M, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE et al (2017) MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab 26:633–47.e7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  194. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE et al (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16:1373–1382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL et al (2017) Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23(10):1234–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Ye X-Q, Li Q, Wang G-H, Sun F-F, Huang G-J, Bian X-W et al (2011) Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 129:820–831

    Article  PubMed  CAS  Google Scholar 

  198. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514:628–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Mahanty S, Prigent A, Garraud O (2015) Immunogenicity of infectious pathogens and vaccine antigens. BMC Immunol 16:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  201. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  PubMed  CAS  Google Scholar 

  202. Codony-Servat J, Rosell R (2015) Cancer stem cells and immunoresistance: clinical implications and solutions. Transl Lung Cancer Res 4:689–703

    PubMed  PubMed Central  CAS  Google Scholar 

  203. Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37:724–737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Abdullah LN, Chow EK-H (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  205. Luen SJ, Salgado R, Fox S, Savas P, Eng-Wong J, Clark E et al (2017) Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study. Lancet Oncol 18:52–62

    Article  PubMed  CAS  Google Scholar 

  206. Ithimakin S, Day KC, Malik F, Zen Q, Dawsey SJ, Bersano-Begey TF et al (2013) HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res 73:1635–1646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27:6120–6130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Seliger B, Kiessling R (2013) The two sides of HER2/neu: immune escape versus surveillance. Trends Mol Med 19:677–684

    Article  PubMed  CAS  Google Scholar 

  209. Bianchini G, Gianni L (2014) The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol 15:e58-e68

    Article  CAS  Google Scholar 

  210. Sd CT, Souazé F, Basseville A, Bernard A-C, Pécot J, Lopez J et al (2017) BCL-XL directly modulates RAS signalling to favour cancer cell stemness. Nat Commun 8:1123

    Article  CAS  Google Scholar 

  211. Kim R, Emi M, Tanabe K (2006) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57:545–553

    Article  PubMed  CAS  Google Scholar 

  212. Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP et al (2010) Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res 70:4655–4665

    Article  PubMed  CAS  Google Scholar 

  213. Worthington John J, Kelly A, Smedley C, Bauché D, Campbell S, Marie Julien C et al (2015) Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42:903–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Scheel C, Eaton Elinor N, Li Sophia H-J, Chaffer Christine L, Reinhardt F, Kah K-J et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145:926–940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Fan Q-M, Jing Y-Y, Yu G-F, Kou X-R, Ye F, Gao L et al (2014) Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Cancer Lett 352:160–168

    Article  PubMed  CAS  Google Scholar 

  216. Cortés M, Sanchez-Moral L, de Barrios O, Fernández-Aceñero MJ, Martínez-Campanario MC, Esteve-Codina A et al (2017) Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles. EMBO J 36:3336–3355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  217. Martin OA, Anderson RL, Narayan K, MacManus MP (2017) Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat Rev Clin Oncol 14:32–44

    Article  PubMed  CAS  Google Scholar 

  218. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402

    Article  PubMed  CAS  Google Scholar 

  219. Nappo G, Handle F, Santer FR, McNeill RV, Seed RI, Collins AT et al (2017) The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogene 6:e342

    Article  CAS  Google Scholar 

  220. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A et al (2017) IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition. Cancer Res 77:3268–3279

    Article  PubMed  CAS  Google Scholar 

  221. Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S et al (2012) Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 47:570–584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Xie T, Li L (2007) Stem cells and their niche: an inseparable relationship. Development 134:2001–2006

    Article  PubMed  CAS  Google Scholar 

  225. Song W, Mazzieri R, Yang T, Gobe GC (2017) Translational significance for tumor metastasis of tumor-associated macrophages and epithelial-mesenchymal transition. Front Immunol 8:1106

    Article  PubMed  PubMed Central  Google Scholar 

  226. Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736–746

    Article  CAS  PubMed  Google Scholar 

  227. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H et al (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A 108:12425–12430

    Article  PubMed  PubMed Central  Google Scholar 

  228. Fatrai S, van Schelven SJ, Ubink I, Govaert KM, Raats D, Koster J et al (2015) Maintenance of clonogenic KIT(+) human colon tumor cells requires secretion of stem cell factor by differentiated tumor cells. Gastroenterology 149:692–704

    Article  PubMed  CAS  Google Scholar 

  229. Levina V, Marrangoni A, Wang T, Parikh S, Su Y, Herberman R et al (2010) Elimination of human lung cancer stem cells through targeting of the stem cell factor–c-kit autocrine signaling loop. Cancer Res 70:338–346

    Article  PubMed  CAS  Google Scholar 

  230. Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BS et al (2017) Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun 8:15080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36:2566–2573

    Article  PubMed  CAS  Google Scholar 

  232. Shi Y, Du L, Lin L, Wang Y (2017) Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16:35–52

    Article  PubMed  CAS  Google Scholar 

  233. Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2:840–855

    Article  PubMed  CAS  Google Scholar 

  234. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  PubMed  CAS  Google Scholar 

  235. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303–313

    Article  PubMed  CAS  Google Scholar 

  236. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A et al (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72:5130–5140

    Article  PubMed  CAS  Google Scholar 

  237. Zhang D, Wang Y, Shi Z, Liu J, Sun P, Hou X et al (2015) Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. Cell Rep 10:1335–1348

    Article  PubMed  CAS  Google Scholar 

  238. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A et al (2013) Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 210:2851–2872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497

    PubMed  PubMed Central  CAS  Google Scholar 

  240. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  241. Treps L, Perret R, Edmond S, Ricard D, Gavard J (2017) Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles 6:1359479

    Article  PubMed  PubMed Central  Google Scholar 

  242. Zhang Z, Dong Z, Lauxen IS, Filho MSA, Nör JE (2014) Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res 74:2869–2881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME et al (2010) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70:9969–9978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Shiina M, Bourguignon LYW (2015) Selective activation of cancer stem cells by size-specific hyaluronan in head and neck cancer. Int J Cell Biol 2015:10

    Article  CAS  Google Scholar 

  246. Okuda H, Kobayashi A, Xia B, Watabe M, Pai SK, Hirota S et al (2012) Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res 72:537–547

    Article  PubMed  CAS  Google Scholar 

  247. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600

    Article  PubMed  CAS  Google Scholar 

  248. Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7:1120–1134

    Article  CAS  Google Scholar 

  249. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors. Stem Cells Their Niche Cell 116:769–778

    PubMed  CAS  Google Scholar 

  250. Nakazawa MS, Keith B, Simon MC (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16:663–673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Das B, Tsuchida R, Malkin D, Koren G, Baruchel S, Yeger H (2008) Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 26:1818–1830

    Article  PubMed  Google Scholar 

  252. Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z et al (2014) Hypoxia inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14:592–605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R et al (2014) HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32:364–376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R et al (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE et al (2015) Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21:65–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  257. Johansson E, Grassi ES, Pantazopoulou V, Tong B, Lindgren D, Berg TJ et al (2017) CD44 interacts with HIF-2α to modulate the hypoxic phenotype of perinecrotic and perivascular glioma cells. Cell Rep 20:1641–1653

    Article  PubMed  CAS  Google Scholar 

  258. Qin J, Liu Y, Lu Y, Liu M, Li M, Li J et al (2017) Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep 7:10592

    Article  PubMed  PubMed Central  Google Scholar 

  259. Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E et al (2016) Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7:64527–64542

    PubMed  PubMed Central  Google Scholar 

  260. Shiraishi A, Tachi K, Essid N, Tsuboi I, Nagano M, Kato T et al (2017) Hypoxia promotes the phenotypic change of aldehyde dehydrogenase activity of breast cancer stem cells. Cancer Sci 108:362–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K et al (2016) CD133 modulate HIF-1α expression under hypoxia in EMT phenotype pancreatic cancer stem-like cells. Int J Mol Sci 17:1025

    Article  PubMed Central  CAS  Google Scholar 

  262. Lee G, Auffinger B, Guo D, Hasan T, Deheeger M, Tobias AL et al (2016) Dedifferentiation of glioma cells to glioma stem-like cells by therapeutic stress-induced HIF signaling in the recurrent GBM model. Mol Cancer Ther 15:3064–3076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89

    Article  PubMed  CAS  Google Scholar 

  264. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31:539–544

    Article  PubMed  CAS  Google Scholar 

  265. Dieter SM, Ball CR, Hoffmann CM, Nowrouzi A, Herbst F, Zavidij O et al (2011) Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 9:357–365

    Article  PubMed  CAS  Google Scholar 

  266. Rumman M, Dhawan J, Kassem M (2015) Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 33:2903–2912

    Article  PubMed  Google Scholar 

  267. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340

    Article  PubMed  CAS  Google Scholar 

  268. Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69:9245–9253

    Article  PubMed  CAS  Google Scholar 

  269. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE et al (2017) Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20:233–46.e7

    Article  PubMed  CAS  Google Scholar 

  271. Kreso A, O'Brien CA, van Galen P, Gan OI, Notta F, Brown AMK et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–548

    Article  PubMed  CAS  Google Scholar 

  272. Oshimori N, Oristian D, Fuchs E (2015) TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160:963–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP et al (2014) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Buczacki SJA, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R et al (2013) Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65

    Article  PubMed  CAS  Google Scholar 

  275. van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A et al (2012) Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14:1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M et al (2010) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Tetteh Paul W, Basak O, Farin Henner F, Wiebrands K, Kretzschmar K, Begthel H et al (2016) Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18:203–213

    Article  PubMed  CAS  Google Scholar 

  278. Tammela T, Sanchez-Rivera FJ, Cetinbas NM, Wu K, Joshi NS, Helenius K et al (2017) A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545:355–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M et al (2015) Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12:445–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells [mdash] what challenges do they pose? Nat Rev Drug Discov 13:497–512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Li Y, Atkinson K, Zhang T (2017) Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies. Cancer Lett 396:103–109

    Article  PubMed  CAS  Google Scholar 

  282. Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y et al (2015) Concise review: targeting cancer stem cells using immunologic approaches. Stem Cells 33:2085–2092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Putzer BM, Solanki M, Herchenroder O (2017) Advances in cancer stem cell targeting: how to strike the evil at its root. Adv Drug Deliv Rev

    Article  PubMed  CAS  Google Scholar 

  284. Colak S, Medema JP (2014) Cancer stem cells – important players in tumor therapy resistance. FEBS J 281:4779–4791

    Article  PubMed  CAS  Google Scholar 

  285. de Goeij BE, Lambert JM (2016) New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 40:14–23

    Article  PubMed  CAS  Google Scholar 

  286. Maccalli C, De Maria R (2015) Cancer stem cells: perspectives for therapeutic targeting. Cancer Immunol Immunother 64:91–97

    Article  PubMed  Google Scholar 

  287. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Lu D, Choi MY, Yu J, Castro JE, Kipps TJ, Carson DA (2011) Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Natl Acad Sci U S A 108:13253–13257

    Article  PubMed  PubMed Central  Google Scholar 

  289. Friend C, Scher W, Holland JG, Sato T (1971) Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A 68:378–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Breitman TR, Selonick SE, Collins SJ (1980) Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A 77:2936–2940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E et al (1999) A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. Blood 94:1192–1200

    PubMed  CAS  Google Scholar 

  292. Abaza Y, Kantarjian HM, Garcia-Manero G, Estey E, Borthakur G, Jabbour E et al (2016) Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 129:1275–1283

    Article  PubMed  CAS  Google Scholar 

  293. Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G et al (2014) Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol Med 6:99–119

    Article  PubMed  CAS  Google Scholar 

  294. Luo M-L, Gong C, Chen C-H, Lee DY, Hu H, Huang P et al (2014) Prolyl isomerase Pin1 acts downstream of miR-200 to promote cancer stem-like cell traits in breast cancer. Cancer Res 74:3603–3616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    PubMed  CAS  Google Scholar 

  296. Uchida H, Maruyama T, Nagashima T, Asada H, Yoshimura Y (2005) Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin. Endocrinology 146:5365–5373

    Article  PubMed  CAS  Google Scholar 

  297. Kim KH, Roberts CWM (2016) Targeting EZH2 in cancer. Nat Med 22:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Mangraviti A, Raghavan T, Volpin F, Skuli N, Gullotti D, Zhou J et al (2017) HIF-1α- targeting acriflavine provides long term survival and radiological tumor response in brain cancer therapy. Sci Rep 7:14978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Cheloni G, Tanturli M, Tusa I, Ho DeSouza N, Shan Y, Gozzini A et al (2017) Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine. Blood 130:655–665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  300. Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Ng SWK, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N et al (2016) A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540:433

    Article  PubMed  CAS  Google Scholar 

  302. Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y (2017) Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 7:13856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  303. He K, Xu T, Goldkorn A (2011) Cancer cells cyclically lose and regain drug-resistant highly tumorigenic features characteristic of a cancer stem-like phenotype. Mol Cancer Ther 10:938–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Llobet-Navas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, M., Gassner, K., Rodriguez-Barrueco, R., Llobet-Navas, D. (2018). Stem Cells and Cancer. In: Delgado-Morales, R. (eds) Stem Cell Genetics for Biomedical Research. Springer, Cham. https://doi.org/10.1007/978-3-319-90695-9_12

Download citation

Publish with us

Policies and ethics