Skip to main content

Transcriptomics and RNA-Seq Data Analysis

  • Chapter
  • First Online:
Bioinformatics and the Cell
  • 2561 Accesses

Abstract

High-throughput sequencing data (HTS) has been used in detecting not only differential gene expression, but also alternative splicing events and different transcription start and termination sites. It has also been used in ribosome profiling for characterizing translation efficiency and Hi-C method for constructing genome 3-D architecture. There are two main difficulties in analyzing HTS data: the large file size, often in terabytes, and the allocation of reads to paralogous genes which impacts the accuracy of computed RPKM values, especially for multicellular eukaryotes with many paralogues. This chapter provides a conceptual framework for analyzing HTS data and offers numerical illustrations of solutions to both problems mentioned above. It includes examples from real data on how to compare performance of different software packages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abolbaghaei A, Silke JR, Xia X (2017) How changes in anti-SD sequences would affect SD sequences in Escherichia coli and Bacillus subtilis. G3 (Bethesda, Md) 7(5):1607–1615

    Article  Google Scholar 

  • Abraham JM, Feagin JE, Stuart K (1988) Characterization of cytochrome c oxidase III transcripts that are edited only in the 3′ region. Cell 55(2):267–272

    Article  CAS  PubMed  Google Scholar 

  • Alatortsev VS, Cruz-Reyes J, Zhelonkina AG, Sollner-Webb B (2008) Trypanosoma brucei RNA editing: coupled cycles of U deletion reveal processive activity of the editing complex. Mol Cell Biol 28(7):2437–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100(7):3889–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvaniti E, Moulos P, Vakrakou A, Chatziantoniou C, Chadjichristos C, Kavvadas P, Charonis A, Politis PK (2016) Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci Rep 6:26235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awan AR, Manfredo A, Pleiss JA (2013) Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci USA 110(31):12762–12767

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell D, Bell AH, Bondaruk J, Hanna EY, Weber RS (2016) In-depth characterization of the salivary adenoid cystic carcinoma transcriptome with emphasis on dominant cell type. Cancer 122(10):1513–1522

    Article  CAS  PubMed  Google Scholar 

  • Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G (2015) Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinform 16:288

    Article  CAS  Google Scholar 

  • Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, Johnson LA, Robinson J, Verhaak RG, Sougnez C et al (2010) Integrative analysis of the melanoma transcriptome. Genome Res 20(4):413–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371

    Article  CAS  PubMed  Google Scholar 

  • Deng Q, Ramskold D, Reinius B, Sandberg R (2014a) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167):193–196

    Article  CAS  PubMed  Google Scholar 

  • Diehn M, Eisen MB, Botstein D, Brown PO (2000) Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25(1):58–62

    Article  CAS  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Epstein CB, Butow RA (2000) Microarray technology – enhanced versatility, persistent challenge. Curr Opin Biotechnol 11(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Furukawa R, Hachiya T, Ohmomo H, Shiwa Y, Ono K, Suzuki S, Satoh M, Hitomi J, Sobue K, Shimizu A (2016) Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation. Sci Rep 6:26424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaasterland T, Bekiranov S (2000) Making the most of microarray data [news]. Nat Genet 24(3):204–206

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  PubMed  Google Scholar 

  • Haustead DJ, Stevenson A, Saxena V, Marriage F, Firth M, Silla R, Martin L, Adcroft KF, Rea S, Day PJ et al (2016) Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-kappaB. Sci Rep 6:26846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath JR, Ribas A, Mischel PS (2016) Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 15(3):204–216

    Article  PubMed  CAS  Google Scholar 

  • Ingolia NT (2010) Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470:119–142

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT (2016) Ribosome footprint profiling of translation throughout the Genome. Cell 165(1):22–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janin L, Schulz-Trieglaff O, Cox AJ (2014) BEETL-fastq: a searchable compressed archive for DNA reads. Bioinformatics 30(19):2796–2801

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Douglass S, Gabunilas J, Pellegrini M, Chanfreau GF (2014) Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae. PLoS Genet 10(4):e1004249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsford C, Patro R (2015) Reference-based compression of short-read sequences using path encoding. Bioinformatics 31(12):1920–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama Y, Shumway M, Leinonen R (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40(Database issue):D54–D56

    Article  CAS  PubMed  Google Scholar 

  • Lamond AI (1988) RNA editing and the mysterious undercover genes of trypanosomatid mitochondria. Trends Biochem Sci 13(8):283–284

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009a) Searching for SNPs with cloud computing. Genome Biol 10(11):R134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009b) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11(8):R83

    Article  PubMed  PubMed Central  Google Scholar 

  • Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(Database):D19–D21

    Article  CAS  PubMed  Google Scholar 

  • Li F, Ge P, Hui WH, Atanasov I, Rogers K, Guo Q, Osato D, Falick AM, Zhou ZH, Simpson L (2009) Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Proc Natl Acad Sci U S A 106(30):12306–12310

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Jiang H, Gu Z, Roberts JW (2013) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110(29):11928–11933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livesey R (2002) Have microarrays failed to deliver for developmental biology? Genome Biol 3(9):comment2009

    Article  Google Scholar 

  • MacKay VL, Li X, Flory MR, Turcott E, Law GL, Serikawa KA, Xu XL, Lee H, Goodlett DR, Aebersold R et al (2004) Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: response of yeast to mating pheromone. Mol Cell Proteomics 3(5):478–489

    Article  CAS  PubMed  Google Scholar 

  • Mlera L, Lam J, Offerdahl DK, Martens C, Sturdevant D, Turner CV, Porcella SF, Bloom ME (2016) Transcriptome analysis reveals a signature profile for tick-borne Flavivirus persistence in HEK 293T cells. MBio 7(3):e00314–e00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M (2008a) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45(1):81–94

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M et al (2008b) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Nicolae M, Pathak S, Rajasekaran S (2015) LFQC: a lossless compression algorithm for FASTQ files. Bioinformatics 31(20):3276–3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Numanagic I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mattavelli M, Sahinalp SC (2016) Comparison of high-throughput sequencing data compression tools. Nat Methods 13(12):1005–1008

    Article  CAS  PubMed  Google Scholar 

  • Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007) Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27(6):928–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pobre V, Arraiano CM (2015) Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli. BMC Genomics 16:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahi SJ, Pecani K, Ondracka A, Oikonomou C, Cross FR (2016) The CDK-APC/C oscillator predominantly entrains periodic cell-cycle transcription. Cell 165(2):475–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10(1):71–73

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):R22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts A, Feng H, Pachter L (2013a) Fragment assignment in the cloud with eXpress-D. BMC Bioinform 14:358

    Article  CAS  Google Scholar 

  • Roberts A, Schaeffer L, Pachter L (2013b) Updating RNA-Seq analyses after re-annotation. Bioinformatics 29(13):1631–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers MF, Thomas J, Reddy AS, Ben-Hur A (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol 13(1):R4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogozin IB, Managadze D, Shabalina SA, Koonin EV (2014) Gene family level comparative analysis of gene expression in mammals validates the ortholog conjecture. Genome Biol Evol 6(4):754–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadatpour A, Lai S, Guo G, Yuan GC (2015) Single-cell analysis in cancer genomics. Trends Genet 31(10):576–586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20(5):508–512

    Article  CAS  PubMed  Google Scholar 

  • Schena M (1996) Genome analysis with gene expression microarrays. BioEssays 18(5):427–431

    Article  PubMed  CAS  Google Scholar 

  • Schena M (2003) Microarray analysis. Wiley-Liss, New York

    Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics [see comments]. Trends Biotechnol 16(7):301–306

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P, McDonagh PD, Loerch PM, Leonardson A, Lum PY, Cavet G et al (2001) Experimental annotation of the human genome using microarray technology. Nature 409(6822):922–927

    Article  CAS  PubMed  Google Scholar 

  • Simpson RM, Bruno AE, Bard JE, Buck MJ, Read LK (2016) High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA 22(5):677–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smircich P, Eastman G, Bispo S, Duhagon MA, Guerra-Slompo EP, Garat B, Goldenberg S, Munroe DJ, Dallagiovanna B, Holetz F et al (2015) Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics 16:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepankiw N, Raghavan M, Fogarty EA, Grimson A, Pleiss JA (2015) Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res 43(17):8488–8501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team GE (2011) Closure of the NCBI SRA and implications for the long-term future of genomics data storage. Genome Biol 12(3):402

    Google Scholar 

  • Tjaden B (2015) De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol 16:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM et al (1999) Analysis of human transcriptomes. Nat Genet 23(4):387–388

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Vogelstein B, Kinzler KW (2000) Analysing uncharted transcriptomes with SAGE. Trends Genet 16(10):423–425

    Article  CAS  PubMed  Google Scholar 

  • Vlasschaert C, Xia X, Gray DA (2016) Selection preserves Ubiquitin Specific Protease 4 alternative exon skipping in therian mammals. Sci Rep 6:20039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Silke JR, Xia X (2017) Elucidating the 16S rRNA 3′ boundaries and defining optimal SD/aSD pairing in Escherichia coli and Bacillus subtilis using RNA-Seq data. Sci Rep. https://doi.org/10.1038/s41598-017-17918-6

  • Wu J, Tzanakakis ES (2013) Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches. Biotechnol Adv 31(7):1047–1062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia X (2017a) ARSDA: a new approach for storing, transmitting and analyzing transcriptomic data. G3: Genes|Genomes|Genetics. https://doi.org/10.1101/114470

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X (2017c) DAMBE6: new tools for microbial genomics, phylogenetics and molecular evolution. J Hered 108(4):431–437. https://doi.org/10.1093/jhered/esx033

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, MacKay V, Yao X, Wu J, Miura F, Ito T, Morris DR (2011) Translation initiation: a regulatory role for poly(A) tracts in front of the AUG codon in saccharomyces cerevisiae. Genetics 189(2):469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, De S, Srikantan S, Abdelmohsen K, Grammatikakis I, Kim J, Kim KM, Noh JH, White EJ, Martindale JL et al (2014) PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nat Commun 5:5248

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Li L, Zhang Y, Yang Y, Yang X (2015a) CompMap: a reference-based compression program to speed up read mapping to related reference sequences. Bioinformatics 31(3):426–428

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang Y, Ji Z, He S, Yang X (2015b) High-throughput DNA sequence data compression. Brief Bioinform 16(1):1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Postscript

Postscript

The most frequent use of RNA-Seq data is to identify differentially expressed genes between a patient and a normal person (between an animal disease model and a normal animal). However, the identified differences may often lead to wrong prescriptions instead of a good cure.

In the mid-1970s, the United Nations noted, correctly, that many differences in people between poor regions and wealthy regions could be attributed to malnutrition. Consequently, it made a valiant effort to ship milk powder to poor regions in Africa and Asia to alleviate the perennial problem of malnutrition, without knowing the problem of lactose intolerance shared by many in these poor regions. The result was unsatisfactory and exemplifies the evil of one-dimensional thinking.

Alcohol consumption in a city in North America is almost perfectly correlated with number of churches in a city. Is it because people are happier and party more with more churches? Most people would immediately recognize that the correlation is due to the fact that both alcohol consumption and number of churches depend on population size of the city. The larger the city, the more the people and consequently the more churches and the more alcohol consumption.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, X. (2018). Transcriptomics and RNA-Seq Data Analysis. In: Bioinformatics and the Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-90684-3_5

Download citation

Publish with us

Policies and ethics