Skip to main content

Virus Induced Gene Silencing Approach: A Potential Functional Genomics Tool for Rapid Validation of Function of Genes Associated with Abiotic Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
  • 984 Accesses

Abstract

Virus-induced gene silencing (VIGS) is a versatile tool for functional characterization of plant genes using gene transcript suppression. With increased identification of differentially expressed genes employing high-throughput transcript profiling under various abiotic stresses, functional elucidation of stress-responsive genes is crucial to understand their role in stress tolerance. In recent past, VIGS has been successfully used as reverse genetic elegant tool for gene function analysis in various model plants and also in crop plants. Viral vector-based silencing of gene of interest and studying the gene knockdown plants under stress can be one of the potential options for assessing functional significance of stress-responsive genes. This review provides an overview of how VIGS is used in different crop plants to characterize genes responsive to various kinds of abiotic stresses, viz., drought stress, salinity stress, heat stress, cold stress, and oxidative and nutrient-deficiency stresses. This review also documents examples from studies where abiotic stress-responsive genes have been functionally characterized using VIGS. In addition, we also summarize improvement in abiotic stress tolerance, seed yield, and seed quality traits in crop plants. This review also describes advantages of VIGS over other functional genomics tools, improvement and limitations of VIGS approach, and future prospects of VIGS as efficient tool for studying adaptation and tolerance in crop plants to various kinds of abiotic stresses. In this review, we have also discussed the mechanism of VIGS and novel ways for application of VIGS to carry out functional elucidation of abiotic stress-responsive genes in a wide range of crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Daim IA, Bejai S, Fridborg I, Meijer J (2018) Identifying potential molecular factors involved in Bacillus amyloliquefaciens 5113 mediated abiotic stress tolerance in wheat. Plant Biol. https://doi.org/10.1111/plb.12680

  • Bao H, Chen X, Lv S, Jiang P, Feng J, Fan P, Nie L, Li Y (2015) Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway. Plant Cell Environ 38:600–613

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Lange M (2010) VIGS genomics goes functional. Trends Plant Sci 15:1–4

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Fernandez AC, Ishitani M, Moreta D, Seki M, Ayling S et al (2011) Construction and EST sequencing of full-length, drought stress cDNA libraries for common beans (Phaseolus vulgaris L.). BMC Plant Biol 11:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P, Vanitharani R, Ogbe F, Fauquet CM (2005) Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138:1828–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RG, Jing H, Guo WL, Wang SB, Ma F, Pan BG, Gong ZH (2015) Silencing of dehydrin CaDHN1 diminishes tolerance to multiple abiotic stresses in Capsicum annuum L. Plant Cell Rep 34:2189–2200

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH et al (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Hwang BK (2012) The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta 235:1369–1382

    Article  CAS  Google Scholar 

  • Dai F, Zhang C, Jiang X, Kang M, Yin X, Lu P et al (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. In: Grotewold E (ed) Plant functional genomics. Humana Press, New York, pp 287–293

    Chapter  Google Scholar 

  • Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905–917

    Article  CAS  PubMed  Google Scholar 

  • Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB (2005) Virus-induced gene silencing in tomato fruit. Plant J 43:299–308

    Article  CAS  PubMed  Google Scholar 

  • Gorantla M, Babu PR, Lachagari VB, Reddy AM, Wusirika R, Bennetzen JL et al (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought stressed seedlings. J Exp Bot 58:253–265

    Article  CAS  PubMed  Google Scholar 

  • Govind G, Harshavardhan VT, Thammegowda HV, Patricia JK, Kalaiarasi PJ, Dhanalakshmi R et al (2009a) Identification and functional validation of a unique set of drought induced genes deferentially expressed in response to gradual water stress in peanut. Mol Gen Genomics 281:591–605

    Article  CAS  Google Scholar 

  • Govind G, Harshavardhan V, Patricia J, Dhanalakshmi R, Senthil-Kumar M, Sreenivasulu N, Udayakumar M (2009b) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Gen Genomics 281:607–607

    Article  CAS  Google Scholar 

  • Guo Y, Huang C, Xie Y, Song F, Zhou X (2010) A tomato Glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salts tresses. Planta 232:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S (2018) An NAM Domain Gene, GhNAC79, Improves resistance to drought stress in Upland cotton. Front Plant Sci. https://doi.org/10.3389/fpls.2017.

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • He X, Anderson JC, Pozo OD, Gu YQ, Tang X, Martin GB (2004) Silencing of subfamily of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. Plant J 38:563–577. x

    Article  CAS  PubMed  Google Scholar 

  • He X, Jin C, Li G, You G, Zhou X, Zheng SJ (2008) Use of the modified viral satellite DNA vector to silence mineral nutrition-related genes in plants: silencing of the tomato ferric chelate reductase gene, FRO1, as an example. Sci China C Life Sci 51:402–409

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Zhang C, Lü P, Jiang G, Liu X, Dai F, Gao J (2014) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnology Journal 12(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  • Kang G, Li G, Ma H, Wang C, Guo T (2013) Proteomic analysis on the leaves of TaBTF3 gene virus-induced silenced wheat plants may reveal its regulatory mechanism. J Proteome 83:130–143

    Article  CAS  Google Scholar 

  • Kotakis C, Vrettos N, Kotsis D, Tsagris M, Kotzabasis K, Kalantidis K (2010) Light intensity affects RNA silencing of a transgene in Nicotiana benthamiana plants. BMC Plant Biol 10:220. 0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzuoglu-Ozturk D, CebeciYalcinkaya O, Akpinar BA, Mitou G, Korkmaz G, Gozuacik D et al (2012) Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Lange M, Yellina A, Orashakova S, Becker A (2013) Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems. In: Becker A (ed) Virus-induced gene silencing. Humana Press, New York, pp 1–14

    Google Scholar 

  • Lee SC, Choi DS, Hwang IS, Hwang BK (2010) The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance. Plant Mol Biol 73:409–424

    Article  CAS  Google Scholar 

  • Liang J, Deng G, Long H, Pan Z, Wang C, Cai P, Xu D, Nima Z-X, Yu M (2012) Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance. Molecular Breeding 30(1):441–451.

    Article  CAS  Google Scholar 

  • Li C, Yan JM, Li YZ, Zhang ZC, Wang QL, Liang Y (2013) Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid-mediated drought tolerance. Int J Mol Sci 14:21983–21996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Xing C, Yao Z, Huang X (2017) PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J 15:1186–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Nakayama N, Schiff M, Litt A, Irish V, Dinesh-Kumar SP (2004) Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol 54:701–711

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liu X, Meng Y, Sun C, Tang H, Jiang Y et al (2013) An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration. J Exp Bot 64:2333–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manmathan H, Shaner D, Snelling J, Tisserat N, Lapitan N (2013) Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot 64:1381–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques MC, Alonso-Cantabrana H, Forment J, Arribas R, Alamar S, Conejero V, Perez-Amador M (2009) A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus. BMC Genomics 10:428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C, Lim CW, Baek W, Kim JH, Lim S, Kim SH, Kim KN, Lee SC (2017) The pepper WPP domain protein, CaWDP1, acts as a novel negative regulator of drought stress via aba signaling. Plant Cell Physiol 58:779–788

    Article  CAS  PubMed  Google Scholar 

  • Pflieger S, Richard MMS, Blanchet S, Meziadi C, Geffroy V (2013) VIGS technology: an attractive tool for functional genomics studies in legumes. Funct Plant Biol 40:1234–1248

    Article  CAS  Google Scholar 

  • Purkayastha A, Dasgupta I (2009) Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47:967–976

    Article  CAS  PubMed  Google Scholar 

  • Purwestri YA et al (2009) The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol 50:429–438

    Article  CAS  PubMed  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Udayakumar M, Mysore KS (2013) A high-throughput virus-induced gene silencing protocol identifies genes involved in multi stress tolerance. BMC Plant Biol 13:193. 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramegowda V, Gill US, Sivalingam PN, Gupta A, Gupta C, Govind G, Nataraja KN, Pereira A, Udayakumar M, Mysore KS, Senthil-Kumar M (2017) GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana. Sci Rep 7:9148. https://doi.org/10.1038/s41598-017-09542-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao SS, El-Habbak MH, Havens WM, Singh AK, Zheng D, Vaughn L, Haudenshield JS, Hartman GL, Korban SS, Ghabrial SA (2014) Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress. Mol Plant Pathol 15:145–160

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using afull-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011a) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:656–665

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011b) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9:797–806

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Udayakumar M (2006) High-throughput virus induced gene silencing approach to assess the functional relevance of a moisture stress-induced cDNA homologous to Lea4. J Exp Bot 57:2291–2302

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Govind G, Kang L, Mysore KS, Udayakumar M (2007) Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus induced gene silencing. Planta 225:523–539

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Ramegowda HV, Hema R, Mysore KS, Udayakumar M (2008) Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance. J Plant Physiol 165:1404–1421

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Fu DQ, Mohamed A, Navarre D, Kachroo A, Ghabrial S (2011) Silencing genes encoding omega-3 fatty acid desaturase alters seed size and accumulation of bean pod mottle virus in soybean. Mol Plant Microbe Interact 24:506–515

    Article  CAS  PubMed  Google Scholar 

  • Soares-Cavalcanti NM, Belarmino LC, Kido EA, Wanderley-Nogueira AC, Bezerra-Neto JP, Cavalcanti-Lira R et al (2012) In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago. Genet Mol Biol 35:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratmann JW, Hind SR (2011) Gene silencing goes viral and uncovers the private life of plants. Entomol Exp Appl 140:91–102

    Article  CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Tran LS, Mochida K (2010) Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean. Plant Signal Behav 5:255–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Sun H, Hakim, Yang X, Zhang X (2018) A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant. https://doi.org/10.1111/ppl.12651

  • Unver T, Budak H (2009) Virus-induced gene silencing, a posttranscriptional gene silencing method. Int J Plant Genomics 2009:198680. https://doi.org/10.1155/2009/198680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Virk N, Liu B, Zhang H, Li X, Zhang Y, Li D et al (2013) Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress. Acta Physiol Plant 35:1211–1221

    Article  CAS  Google Scholar 

  • Wang C, Lu W, He X, Wang F, Zhou Y, Guo X, Guo X (2016) The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57:1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Singh NB, Saini HK, Devi LP, Monalisa P (2010) Expressed sequenced tags (ESTs)-a functional genomic approach for gene discovery. Int J Curr Res 5:74–79

    Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    Article  PubMed  Google Scholar 

  • Yamagishi N, Yoshikawa N (2011a) Expression of FLOWERING LOCUS T from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta (in press). https://doi.org/10.1007/ s00425–010- 1318–3.

    Google Scholar 

  • Yamagishi N, Yoshikawa N (2011b) Expression of FLOWERING LOCUS from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta 233:561–568

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N et al (2011) Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of Arabidopsis thaliana gene using the Apple latent spherical virus vector. Plant Mol Biol 75:193–204

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jia H, Wang F, Wang C, Liu S, Guo X (2015) Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana. Front Plant Sci 6:265. https://doi.org/10.3389/fphys.00265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Kumar, M., Choudhary, D., Rane, J., Singh, N.P. (2018). Virus Induced Gene Silencing Approach: A Potential Functional Genomics Tool for Rapid Validation of Function of Genes Associated with Abiotic Stress Tolerance in Crop Plants. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_2

Download citation

Publish with us

Policies and ethics