Skip to main content

“Fc Fusion Proteins”

  • Chapter
  • First Online:
Challenges in Protein Product Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 38))

Abstract

IgG-based therapeutics has become an increasingly important category of the over two hundred biopharmaceutical products approved in the USA and the EU by late 2014. While a large percentage of this consists of monoclonal antibodies, Fc fusion proteins make up an important class of IgG-based biotechnology drugs. This chapter reviews the rationale for creating Fc fusion proteins , describes challenges, regulatory considerations, and improvements that have been made with this important class of therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang X-R, et al. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Disc. 2011;10:101–10.

    Article  CAS  Google Scholar 

  2. Capon D. Designing CD4 immunoadhesins for AIDS therapy. Nature. 1989;525–531.

    Article  CAS  PubMed  Google Scholar 

  3. Aggarwal S. What’s fueling the biotech engine—2012–2013. Nat Biotechnol. 2014;32(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  4. Mohler K, et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemial and function simultaneously as both TNF carriers and TNF agonists. J Immunol. 1993;151(3):1548–61.

    PubMed  CAS  Google Scholar 

  5. Ducore JM, Miguelino MG, Powell JS. Alprolix (recombinant factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B. Expert Re Hematology. 2014;7(5):559–71.

    Article  CAS  Google Scholar 

  6. Powell JS, et al. Safety and prolonged activity of recombinant factor VIII Fc fusion protein in hemophilia A patients. Blood. 2012;119(13):3031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shapiro A. Development of long-acting recombinant FVIII and FIX Fc fusion proteins for the management of hemophilia. Expert Opin Biol Ther. 2013;13(9):1287–97.

    Article  CAS  PubMed  Google Scholar 

  8. Rath T, et al. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol. 2013.

    Google Scholar 

  9. Wu B, Sun Y-N. Pharmacokinetics of peptide-Fc fusion proteins. J Pharm Sci. 2014;103:53–64.

    Article  CAS  PubMed  Google Scholar 

  10. Hermeling S, Crommelin D, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res. 2004;22(6):897–903.

    Article  Google Scholar 

  11. Dintzis H, Dintzis R, Vogelstein B. Moleculare determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci USA. 1976;73(10):3671–5.

    Article  CAS  PubMed  Google Scholar 

  12. Shimamoto G, Gegg C, Boone T, Queva C. Peptibodies: a flexible alternative format to antibodies. mAbs. 2012;4(5):586–591.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cines D, Yasothan U, Kirkpatrick P. Romiplostim. Nat Rev Drug Discov. 2008;7:887–8.

    Article  CAS  PubMed  Google Scholar 

  14. Molineux G, Newland A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: From bench to bedside. Br J Haematol. 2010;150(1):9–20.

    PubMed  CAS  Google Scholar 

  15. Huang C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr Opin Biotechnol. 2009;20:692–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lindzen M, et al. A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis. Oncogene. 2012;31:3505–15.

    Article  CAS  PubMed  Google Scholar 

  17. Holash J, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. PNAS. 2002;99:11393–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kim ES, et al. Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. PNAS. 2002;99:11399–404.

    Article  CAS  PubMed  Google Scholar 

  19. Kimchi-Sarfaty C, et al. Building better drugs: developing and regulating engineered therapeutic proteins. Cell. 2013;34(10):534–48.

    CAS  Google Scholar 

  20. Dumont J, Low S, Bitonti A. Monomeric Fc fusions: Impact on pharmacokinetic and biological activity of protein therapeutics. Biodrugs. 2006;20(3):151–60.

    Article  CAS  PubMed  Google Scholar 

  21. Economides A, Carpenter L. Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med. 2003;9:47–52.

    Article  CAS  Google Scholar 

  22. Nimmerjahn F, Ravetch J. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8:34–47.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs C, et al. Pharmacokinetic parameters and biodistribution of soluble cytokine receptors. Int Rev Exp Pathol. 1992;34B:123.

    Google Scholar 

  24. Yu H-K, et al. Immunoglobulin Fc domain fusion to apolipoprotein(a) kringle V significantly prolongs plasma half-life without affecting its anti-angiogenic activity. Protein Eng Des Sel. 2013;26(6):425–32.

    Article  CAS  PubMed  Google Scholar 

  25. Shiga Y, et al. Recombinant human lactoferrin-Fc fusion with an improved plasma half-life. Eur J Pharm Sci. 2015;67:136–43.

    Article  CAS  PubMed  Google Scholar 

  26. Jazayeri JA, Carroll GJ. Fc-based cytokines. Biodrugs. 2008;22(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  27. Valee S, et al. Pulmonary administration of interferon beta-1a-fc fusion protein in non-human primates using an immunoglobulin transport pathway. J Interferon Cytokine Res. 2012;32(4):178–84.

    Article  CAS  Google Scholar 

  28. Dixon W, et al. Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated witn anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR). Ann Rheum Dis. 2010;69(3):522–8.

    Article  CAS  PubMed  Google Scholar 

  29. Tubach F, et al. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum. 2009;60(7):1884–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hunt L, Emery P. Etanercept in the treatment of rheumatoid arthritis. Expert Opin Biol Ther. 2013;13(10):1441–50.

    Article  CAS  PubMed  Google Scholar 

  31. Peppel K, Crawford D, Beutler B. A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med. 1991;174:1483–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, et al. Fusion partners as a tool for the expression of difficult proteins in mammalian cells. Curr Pharm Biotechnol. 2010;11(3):241–5.

    Article  CAS  PubMed  Google Scholar 

  33. Carter P. Introduction to current and future protein therapeutics: a protein engineering perspective. Exptl Cell Res. 2011;317:1261–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kumagai Y, et al. Pharmacodynamics and pharmacokinetics of AMG 531, a thrombopoiesis-stimulating peptibody, in healthy Japanese subjects; a randomized, placebo-controlled study. J Clin Pharmacol. 2007;47(12):1489–97.

    Article  CAS  PubMed  Google Scholar 

  35. Sathish J, et al. Challenges and approaches for the development of safer immunomodulatory biologics. Nat Rev Drug Disc. 2013;12:306–24.

    Article  CAS  Google Scholar 

  36. Grinyo J. An integrated safety profile analysis of belatacept in kidney transplant recipients. Transplantation. 2010;90:1521–7.

    Article  PubMed  Google Scholar 

  37. Chen X, Zaro J, Shen W-C. Pharmacokinetics of recombinant bifunctional fusion proteins. Expert Opin Drug Metab Toxicol. 2012;8(5):581–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strohl W. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol. 2009;20:685–91.

    Article  CAS  PubMed  Google Scholar 

  39. Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8:226–34.

    Article  CAS  PubMed  Google Scholar 

  40. Kaneko Y, Nimmerjahn F, Ravetch J. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–3.

    Article  CAS  PubMed  Google Scholar 

  41. Stavenhagen J, et al. Enhancing the potency of therapeutic monoclonal antibodies via Fc optimization. Adv Enzyme Regul. 2008;48:152–64.

    Article  CAS  PubMed  Google Scholar 

  42. Shoji-Hosaka E, et al. Enhanced Fc-dependent cellular cytotoxicity of Fc fusion proteins derived from TNF receptor II and LFC-3 by fucose removal from Asn-linked oligosaccharides. J Biochem. 2006;140:777–83.

    Article  CAS  PubMed  Google Scholar 

  43. Matsuda K, et al. Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol Immunol. 2007;44(12):3122–31.

    Article  CAS  Google Scholar 

  44. Kellner C, Derer S, Valerius T, Peipp M. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods. 2014;65:105–13.

    Article  CAS  PubMed  Google Scholar 

  45. Houde D, Peng Y, Berkowitz S, Engen J. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics. 2010;9:1716–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagashima H, et al. TNF receptor II fusion protein with tandemly repeated Fc domains. J Biochem. 2011;149(3):337–46.

    Article  CAS  PubMed  Google Scholar 

  47. Yeung Y, et al. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol. 2009;182:7663–71.

    Article  CAS  PubMed  Google Scholar 

  48. Zalevsky J, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28(2):157–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Czajkowsky D, Hu J, Shao Z, Pleass R. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med. 2012;4:1015–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Scallon B, et al. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007;44(7):1524–34.

    Article  CAS  PubMed  Google Scholar 

  51. Davis P, et al. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J Rheum. 2007;34(11):2204–10.

    PubMed  CAS  Google Scholar 

  52. Bruhns P, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Q, et al. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist. PLoS ONE. 2010;5:e12734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vafa O, et al. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods. 2014;65:114–26.

    Article  CAS  PubMed  Google Scholar 

  55. Lee J-H, et al. Biochemical characterization of a new recombinant TNF receptor-hyFc fusion protein expressed in CHO cells. Protein Expr Purif. 2013;87:17–26.

    Article  CAS  PubMed  Google Scholar 

  56. Ishino T, et al. Engineering a monomeric Fc domain modality by N-glycosylation for the half-life extension of biotherapeutics. J Biol Chem. 2013;288(23):16529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ying T, et al. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics. J Biol Chem. 2013;288(35):25154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. FDAGov. Guidance for industry: Immunogenicity assessment for therapeutic protein products. [Online] Available at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm338856.pdf. Accessed 24 Mar 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Pettit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heath, C., Pettit, D. (2018). “Fc Fusion Proteins”. In: Warne, N., Mahler, HC. (eds) Challenges in Protein Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-90603-4_24

Download citation

Publish with us

Policies and ethics