Skip to main content

Introduction into Formulation Development of Biologics

  • Chapter
  • First Online:
Challenges in Protein Product Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 38))

Abstract

Formulation development is an essential part of every biopharmaceutical development program and important for the therapeutic and commercial success of a protein drug product by assuring the quality, safety, and efficacy. The multiple phases of formulation development interact with other product development exercises as early as discovery research all the way until and beyond market approval. Every drug product demands a tailor-made formulation, due to the complexity of different degradation pathways potentially affecting product stability, the specific characteristics of the individual drug molecule, special patient needs, and even marketing considerations. Formulation development can be approached using various strategies, based on a rational design, relying on scientific knowledge in low or medium throughput, or high-throughput formulation screening of hundreds or even thousands of conditions employing miniaturized analytical methods. In this chapter, an introduction to the field of protein formulation development is given, the literature on current protein formulation development strategies is reviewed, and current challenges are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF4:

Asymmetrical flow field-flow fractionation

API:

Active pharmaceutical ingredient

AUC:

Analytical ultracentrifugation

CTA:

Clinical trial authorization

DLS:

Dynamic light scattering

DNA:

Deoxyribonucleic acid

DOE:

Design of experiment

DP:

Drug product

DS:

Drug substance

DSC:

Differential scanning calorimetry

DSF:

Differential scanning fluorimetry

FTIR:

Fourier-transform infrared

Glu:

Glutamic acid

GMP:

Good manufacturing practice

h:

Hour(s)

H2O2:

Hydrogen peroxide

His:

Histidine

HPLC:

High-performance liquid chromatography

HTF:

High-throughput formulation

ICH:

International conference on harmonization

LA:

License application

LC-MS:

Liquid chromatography-coupled mass spectrometry

mg/ml:

Milligram per milliliter

mM:

Millimolar

μm:

Micrometer

nm:

Nanometer

pH:

Potential of hydrogen

pI:

Isoelectric point

pKa:

Acid dissociation constant

QC:

Quality control

RH:

Relative humidity

RNA:

Ribonucleic acid

rpm:

Rounds per minute

SEC:

Size exclusion chromatography

SLS:

Static light scattering

Tg’:

Glass transition temperature

UPLC:

Ultrahigh-performance liquid chromatography

USP:

United States Pharmacopeia

UV:

Ultraviolet

°C:

Degrees Celsius

%:

Percent

References

  1. Andya J, Cleland JL, Hsu CC, Lam XM, Overcashier DE, Shire SJ, Yang JYF, Wu SSY. Stable isotonic lyophilized protein formulation, WO 9704801. 1997.

    Google Scholar 

  2. Antosova Z, Mackova M, Kral V, Macek T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27(11):628–35.

    Article  CAS  PubMed  Google Scholar 

  3. Bam NB, et al. Tween protects recombinant human growth hormone against agitation- induced damage via hydrophobic interactions. J Pharm Sci. 1998;87(12):1554–9.

    Article  CAS  PubMed  Google Scholar 

  4. Brown MB. The lost science of formulation. Drug Discovery Today. 2005;10(21):1405–7.

    Article  PubMed  Google Scholar 

  5. Capelle MAH, Gurny R, Arvinte T. High throughput screening of protein formulation stability: practical considerations. Eur J Pharm Biopharm. 2007;65(2):131–48.

    Article  CAS  PubMed  Google Scholar 

  6. Carpenter JF, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carpenter JF, et al. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci. 2010;99(5):2200–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chang BS, Hershenson S. Practical approaches to protein formulation development. In: Carpenter JF, Manning MC, editors. Rationale design of stable protein formulations-theory and practice. New York: Kluwer Academic/Plenum; 2002. p. 1–20.

    Google Scholar 

  9. Den Engelsman J, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28(4):920–33.

    Article  CAS  Google Scholar 

  10. Fesinmeyer RM, et al. Effect of ions on agitation- and temperature-induced aggregation reactions of antibodies. Pharm Res. 2009;26(4):903–13.

    Article  CAS  PubMed  Google Scholar 

  11. Filipe V, et al. Analytical approaches to assess the degradation of therapeutic proteins. TrAC Trends Anal Chem. 2013;49:118–25.

    Article  CAS  Google Scholar 

  12. Freire E, et al. Chemical denaturation as a tool in the formulation optimization of biologics. Drug Discovery Today. 2013;18(19–20):1007–13.

    Article  CAS  PubMed  Google Scholar 

  13. Gokarn YR, et al. Self-buffering antibody formulations. J Pharm Sci. 2008;97(8):3051–66.

    Article  CAS  PubMed  Google Scholar 

  14. Grillo AO. Late-stage formulation development and characterization of biopharmaceuticals. In: Jameel F, Hershenson S, editors. Formulation and process development strategies for manufacturing biopharmaceuticals. Hoboken, NJ, USA: Wiley; 2010.

    Google Scholar 

  15. Hawe A, et al. Forced degradation of therapeutic proteins. J Pharm Sci. 2012;101(3):895–913.

    Article  CAS  PubMed  Google Scholar 

  16. Houde D, Berkowitz S, editors. Biophysical characterization of proteins in developing biopharmaceuticals. Elsevier B.V. 1st edn. 2014.

    Google Scholar 

  17. Jiskoot W, et al. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release. J Pharm Sci. 2012;101(3):946–54.

    Article  CAS  PubMed  Google Scholar 

  18. Jiskoot W, Crommelin D, editors. Methods for structural analysis of protein pharmaceuticals. Scientists, Arlington, VA: American Association of Pharm; 2005.

    Google Scholar 

  19. Joshi SB, et al. An empirical phase diagram-high-throughput screening approach to the characterization and formulation of biopharmaceuticals. In: Jameel F, Hershenson S, editors. Formulation and process development strategies for manufacturing biopharmaceuticals. USA: Hoboken, NJ; 2010.

    Google Scholar 

  20. Kalonia C, et al. Radar chart array analysis to visualize effects of formulation variables on IgG1 particle formation as measured by multiple analytical techniques. J Pharm Sci. 2013;102(12):4256–67.

    Article  CAS  PubMed  Google Scholar 

  21. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  CAS  PubMed  Google Scholar 

  22. Khossravi M, Kao Y-H, Mrsny RJ, Sweeney TD. Analysis methods of polysorbate 20: a new method to assess the stability of polysorbate 20 and established methods that may overlook degraded polysorbate 20. Pharm Res. 2002;19(5):634–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kirshner LS. Regulatory expectations for analysis of aggregates and particles. In: Colorado protein stability conference. Breckenridge, CO. 2012.

    Google Scholar 

  24. Krishnan S, Pallitto MM, Ricci MS. Development of formulations for therapeutic monoclonal antibodies and Fc fusion proteins. In: Jameel J, Hershenson S, editors. Formulation and process development strategies for manufacturing biopharmaceuticals. New Jersey, NJ: Wiley; 2010. p. 383–427.

    Chapter  Google Scholar 

  25. Labrenz SR. Ester hydrolysis of polysorbate 80 in mAb drug product: evidence in support of the hypothesized risk after the observation of visible particulate in mAb formulations. J Pharm Sci. 2014;103(8):2268–77.

    Article  CAS  PubMed  Google Scholar 

  26. Laursen T, Hansen B, Fisker S. Pain perception after subcutaneous injections of media containing different buffers. Basic Clin Pharm Toxycology. 2006;98:218–21.

    Article  CAS  Google Scholar 

  27. Mahler H-C, et al. Behaviour of polysorbate 20 during dialysis, concentration and filtration using membrane separation techniques. J Pharm Sci. 2008;97(2):764–74.

    Article  CAS  PubMed  Google Scholar 

  28. Mahler HC, Jiskoot W, editors. Analysis of aggregates and particles in protein pharmaceuticals. New York, NY: Wiley; 2011.

    Google Scholar 

  29. Manning MC, et al. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  CAS  PubMed  Google Scholar 

  30. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discovery. 2014;13(9):655–72.

    Article  CAS  PubMed  Google Scholar 

  31. Monnier VM. Nonenzymatic glycosylation, the maillard reaction and the aging process. J Gerontol. 1990;45(4):B105–11.

    Article  CAS  PubMed  Google Scholar 

  32. Nayar R, Manning MC. High throughput formulation: strategies for rapid development of stable protein products. In: Carpenter JF, Manning MC, editors. Rationale design of stable protein formulations-theory and practice. Kluwer Academic/Plenum: New York, NY; 2002. p. 177–99.

    Chapter  Google Scholar 

  33. Neergaard MS, et al. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass—prediction of viscosity through protein-protein interaction measurements. Eur J Pharm Sci. 2013;49(3):400–10.

    Article  CAS  PubMed  Google Scholar 

  34. Philo JS. A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol. 2009;10(4):359–72.

    Article  CAS  PubMed  Google Scholar 

  35. Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Privalov PL, Khechinashvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974;86(3):665–84.

    Article  CAS  PubMed  Google Scholar 

  37. Saito S, et al. Behavior of monoclonal antibodies: relation between the second virial coefficient (B (2)) at low concentrations and aggregation propensity and viscosity at high concentrations. Pharm Res. 2012;29(2):397–410.

    Article  CAS  PubMed  Google Scholar 

  38. Samra HS, He F. Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm. 2012;9(4):696–707.

    Article  CAS  PubMed  Google Scholar 

  39. Sarciaux JM, Mansour S, Hageman MJ, Nail SL. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying. J Pharm Sci. 1999; 88(12):1354–1361.

    Article  CAS  PubMed  Google Scholar 

  40. Schweizer D, Serno T, Goepferich A. Controlled release of therapeutic antibody formats. Eur J Pharm Biopharm. 2014;88(2):291–309.

    Article  CAS  PubMed  Google Scholar 

  41. Stoner MR, et al. Protein-solute interactions affect the outcome of ultrafiltration/diafiltration operations. J Pharm Sci. 2004;93(9):2332–42.

    Article  CAS  PubMed  Google Scholar 

  42. Wang W, Ignatius AA, Thakkar SV. Impact of residual impurities and contaminants on protein stability. J Pharm Sci. 2014;103(5):1315–30.

    Article  CAS  PubMed  Google Scholar 

  43. Yadav S, Sreedhara A, et al. Establishing a link between amino acid sequences and self-associating and viscoelastic behavior of two closely related monoclonal antibodies. Pharm Res. 2011;28(7):1750–64.

    Article  CAS  PubMed  Google Scholar 

  44. Yadav S, Scherer TM, et al. Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime. Anal Biochem. 2011;411(2):292–6.

    Article  CAS  PubMed  Google Scholar 

  45. Yadav S, Shire SJ, Kalonia DS. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012;101(3):998–1011.

    Article  CAS  PubMed  Google Scholar 

  46. Zolls S, et al. Particles in therapeutic protein formulations, Part 1: overview of analytical methods. J Pharm Sci. 2012;101(3):914–35.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  1. Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals. F. Jameel, S. Hershenson (Editors), 2010. Hoboken, NJ, USA: John Wiley & Sons. ISBN 978-0-470-111812-2.

    Google Scholar 

  2. Rationale Design of stable protein formulations-theory and practice. J.F. Carpenter, M.C. Manning (Editors), 2002. New York, NY, USA. Kluwer Academic/Plenum. ISBN 978-1-4615-0557-0.

    Google Scholar 

  3. Development and Manufacture of Protein Pharmaceuticals. S.L. Nail, M.J. Akers (Editors), 2002. New York, NY, USA. Kluwer Academic/Plenum. ISBN 978-1-4615-0549-5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Friess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weinbuch, D., Hawe, A., Jiskoot, W., Friess, W. (2018). Introduction into Formulation Development of Biologics. In: Warne, N., Mahler, HC. (eds) Challenges in Protein Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-90603-4_1

Download citation

Publish with us

Policies and ethics