Advertisement

Purely Synthetic and Domain Independent Consistency-Guaranteed Populations in \(\mathcal {SHIQ}^{(\mathcal {D})}\)

  • Jean-Rémi BourguetEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 795)

Abstract

The elaborations of artificial knowledge bases can represent a clever solution to test new semantics-based infrastructures before deploying them and a precious support to the design of some prototypes. One major challenge of such synthetic data generations is to guarantee the acquisition of sound knowledge bases able to pass the equivalent of a Turing test. That’s why populations have to be restricted to guarantee the consistency until a certain fragment of expressivity. In a past work, we released a first version of a populator guaranteeing the consistency and populating knowledge bases founded on \(\textsc {TBox}\)es expressed in \(\mathcal {ALCQ}^{(\mathcal {D})}\). This purely syntactic and domain independent populator is based on a random process of concept, role and limited data instantiations. In this paper, we propose to extend the expressivity covering by the populator until the fragment \(\mathcal {SHIQ}^{(\mathcal {D})}\). This extension deals with \(\textsc {Rbox}\)es conforming the consistency of the role assertions with respect to the domains/ranges, the universal quantifications and the maximal cardinalities of all the super and inverse roles. Finally, an evaluation of some performances of the populator has been performed.

Notes

Acknowledgments

This work has been made possible by “la Regione Autonoma della Sardegna e Autorità Portuale di Cagliari con L.R. 7/2007, Tender 16 2011, CRP-49656 con il projeto: Metodi innovativi per il supporto alle decisioni riguardanti l’ottimizzazione delle attività in un terminal container” and by “o EDITAL FAPES/CAPES N\(^{\circ }\)009/2014 (Bolsa de fixacão de doutore N\(^{\circ }\)71047522) com a proposta: Melhor integração de tecnologias de representação de conhecimento e raciocínio nas utilizações local e Web”.

References

  1. 1.
    Melz, E.R., Macgregor, R.M.: Design, implementation, and analysis of a parallel description classifier. Technical report, University of Southern California Marina Del Rey Information Sciences Inst (1995)Google Scholar
  2. 2.
    Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D. thesis, Centre for Telematics and Information Technology, University of Twente, Enschede, The Netherlands (2005)Google Scholar
  3. 3.
    Bedini, I., Nguyen, B.: Automatic ontology generation: state of the art. PRiSM Laboratory, Technical report. University of Versailles (2007)Google Scholar
  4. 4.
    Guarino, N., Schneider, L.: Ontology-driven conceptual modelling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, p. 10. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45816-6_4CrossRefGoogle Scholar
  5. 5.
    Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 228–248. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32254-2_14CrossRefGoogle Scholar
  6. 6.
    De Giacomo, G., Lenzerini, M.: TBox and ABox reasoning in expressive description logics. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), Cambridge, Massachusetts, USA, 5–8 November 1996, pp. 316–327. Morgan Kaufmann, Los Altos (1996)Google Scholar
  7. 7.
    Bourguet, J.R.: JPoT: Just another Populator of TBoxes. In: Ventura, J.A.L., Alatrista-Salas, H. (eds.) Proceedings of the 4th Annual International Symposium on Information Management and Big Data - SIMBig 2017. CEUR Workshop Proceedings. CEUR-WS.org (2017, in press)Google Scholar
  8. 8.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48, 1–26 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sattler, U.: A concept language extended with different kinds of transitive roles. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 333–345. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61708-6_74CrossRefGoogle Scholar
  10. 10.
    Baader, F., Nutt, W.: Basic description logics, pp. 43–95. Cambridge University Press (2003)Google Scholar
  11. 11.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS (LNAI), vol. 1705, pp. 161–180. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48242-3_11CrossRefzbMATHGoogle Scholar
  12. 12.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic \(\cal{SHIQ}\). In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 482–496. Springer, Heidelberg (2000).  https://doi.org/10.1007/10721959_39CrossRefGoogle Scholar
  13. 13.
    Koopmann, P., Schmidt, R.A.: Uniform interpolation of \(\cal{ALC}\)-ontologies using fixpoints. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 87–102. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40885-4_7CrossRefzbMATHGoogle Scholar
  14. 14.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. Web Sem. Sci. Serv. Agents World Wide Web 3(2), 158–182 (2005)CrossRefGoogle Scholar
  15. 15.
    Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139. Springer, Heidelberg (2006).  https://doi.org/10.1007/11762256_12CrossRefGoogle Scholar
  16. 16.
    Ongenae, F., Verstichel, S., De Turck, F., Dhaene, T., Dhoedt, B., Demeester, P.: OTAGen: a tunable ontology generator for benchmarking ontology-based agent collaboration. In: 32nd Annual IEEE International on Computer Software and Applications, pp. 529–530. IEEE (2008)Google Scholar
  17. 17.
    Boeker, M., Hastings, J., Schober, D., Schulz, S.: A T-Box generator for testing scalability of OWL mereotopological patterns. In: Dumontier, M., Courtot, M. (eds.) Proceedings of the 8th International Workshop on OWL: Experiences and Directions. CEUR Workshop Proceedings, vol. 796 (2011)Google Scholar
  18. 18.
    Chowdhury, N.: Ontoevaluator – SKTI synthetic data generator synthetic data generator (2012)Google Scholar
  19. 19.
    Horrocks, I., Yatskevich, M., Jiménez-Ruiz, E. (eds.): Proceedings of the 1st International Workshop on OWL Reasoner Evaluation (ORE-2012), Manchester, UK, 1 July 2012. CEUR Workshop Proceedings, vol. 858. CEUR-WS.org (2012)Google Scholar
  20. 20.
    Li, Y., Yu, Y., Heflin, J.: Evaluating reasoners under realistic semantic web conditions. In: Horrocks, I., Yatskevich, M., Jiménez-Ruiz, E. (eds.) Proceedings of the 1st International Workshop on OWL Reasoner Evaluation. CEUR Workshop Proceedings, vol. 858. CEUR-WS.org (2012)Google Scholar
  21. 21.
    Bourguet, J.R., Pulina, L.: TROvE: a graphical tool to evaluate OWL reasoners. In: Bail, S., Glimm, B., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Steigmiller, A. (eds.) Informal Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE 2014) Co-Located with the Vienna Summer of Logic (VSL 2014), Vienna, Austria, 13 July 2014. CEUR Workshop Proceedings, vol. 1207, pp. 30–35. CEUR-WS.org (2014)Google Scholar
  22. 22.
    Batsakis, S., Petrakis, E.G.M., Tachmazidis, I., Antoniou, G.: Temporal representation and reasoning in OWL 2. Sem. Web 8(6), 981–1000 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Politiche ed Ingegneria dell’InformazioneUniversità degli Studi di Sassari (UNISS)SassariItaly
  2. 2.Núcleo de Estudos em Modelagem Conceitual e OntologiasFederal University of Espírito Santo (UFES)VitóriaBrazil

Personalised recommendations