Skip to main content

Cytokine and Anti-Cytokine Agents as Future Therapeutics for Fibrostenosing IBD

  • Chapter
  • First Online:
  • 581 Accesses

Abstract

The pathogenesis of stricture formation in inflammatory bowel disease is a complex process with a wide variety of clinical, genetic, epigenetic, and environmental risk factors. Originally thought to be a consequence of chronic inflammation, new evidence arises for non-inflammatory contributors to stricture formation, suggesting an intricate interplay of cellular, molecular, and additional host/environmental factors. Although no specific medical treatments for fibrostenotic intestinal strictures currently exist, understanding the molecular pathways involved in stricture formation will undoubtedly guide therapeutic developments. As mediators of inflammation and immunoregulation, cytokines are key effectors in the fibrotic process. Accordingly, targeting inflammation, in part via cytokine blockade, has been the mainstay of therapy in IBD. In many cases, inflammatory disease is associated with significant fibrotic change, as increased inflammation perpetuates the cascade of mucosal repair. Thus, inflammatory cytokine-targeted therapy may serve as one potential avenue for treating fibrostenosis. As regulatory and repair mechanisms have been implicated in fibrosis as well, either as sequelae of inflammation or via de novo pathways, a parallel route for treating intestinal fibrosis may be the targeting of “regulatory” cytokines. This chapter will highlight the relevant contributions and potential therapeutic targeting of cytokines involved in inflammatory and regulatory pathways leading to fibrosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cosnes J, Gower-Rousseau C, Seksik P, et al. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140:1785–94.

    Article  PubMed  Google Scholar 

  2. Latella G, Papi C. Crucial steps in the natural history of inflammatory bowel disease. World J Gastroenterol. 2012;18:3790–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spinelli A, Correale C, Szabo H, et al. Intestinal fibrosis in Crohn’s disease: medical treatment or surgery? Curr Drug Targets. 2010;11:242–8.

    Article  PubMed  CAS  Google Scholar 

  4. Theiss AL, Simmons JG, Jobin C, et al. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem. 2005;280:36099–109.

    Article  PubMed  CAS  Google Scholar 

  5. Bahcecioglu IH, Koca SS, Poyrazoglu OK, et al. Hepatoprotective effect of infliximab, an anti-TNF-alpha agent, on carbon tetrachloride-induced hepatic fibrosis. Inflammation. 2008;31:215–21.

    Article  PubMed  CAS  Google Scholar 

  6. Khan SB, Cook HT, Bhangal G, et al. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 2005;67:1812–20.

    Article  PubMed  CAS  Google Scholar 

  7. Trachtman H, Vento S, Herreshoff E, et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 2015;16:111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Antoniou KM, Mamoulaki M, Malagari K, et al. Infliximab therapy in pulmonary fibrosis associated with collagen vascular disease. Clin Exp Rheumatol. 2007;25:23–8.

    PubMed  CAS  Google Scholar 

  9. Bargagli E, Galeazzi M, Bellisai F, et al. Infliximab treatment in a patient with systemic sclerosis associated with lung fibrosis and pulmonary hypertension. Respiration. 2008;75:346–9.

    Article  PubMed  Google Scholar 

  10. Denton CP, Engelhart M, Tvede N, et al. An open-label pilot study of infliximab therapy in diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2009;68(9):1433.

    Article  PubMed  CAS  Google Scholar 

  11. Abraham DJ, Shiwen X, Black CM, et al. Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J Biol Chem. 2000;275:15220–5.

    Article  PubMed  CAS  Google Scholar 

  12. Bitzer M, von Gersdorff G, Liang D, et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 2000;14:187–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Mori R, Kondo T, Ohshima T, et al. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J. 2002;16:963–74.

    Article  PubMed  CAS  Google Scholar 

  14. Di Sabatino A, Pender SL, Jackson CL, et al. Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor antibodies. Gastroenterology. 2007;133:137–49.

    Article  PubMed  CAS  Google Scholar 

  15. Lichtenstein GR, Olson A, Travers S, et al. Factors associated with the development of intestinal strictures or obstructions in patients with Crohn’s disease. Am J Gastroenterol. 2006;101:1030–8.

    Article  PubMed  Google Scholar 

  16. Sorrentino D, Avellini C, Beltrami CA, et al. Selective effect of infliximab on the inflammatory component of a colonic stricture in Crohn’s disease. Int J Color Dis. 2006;21:276–81.

    Article  Google Scholar 

  17. Pelletier AL, Kalisazan B, Wienckiewicz J, et al. Infliximab treatment for symptomatic Crohn’s disease strictures. Aliment Pharmacol Ther. 2009;29:279–85.

    Article  PubMed  CAS  Google Scholar 

  18. Swaminath A, Lichtiger S. Dilation of colonic strictures by intralesional injection of infliximab in patients with Crohn’s colitis. Inflamm Bowel Dis. 2008;14:213–6.

    Article  PubMed  Google Scholar 

  19. Jones DW, Finlayson SR. Trends in surgery for Crohn’s disease in the era of infliximab. Ann Surg. 2010;252:307–12.

    Article  PubMed  Google Scholar 

  20. Bouguen G, Peyrin-Biroulet L. Surgery for adult Crohn’s disease: what is the actual risk? Gut. 2011;60:1178–81.

    Article  PubMed  Google Scholar 

  21. Adelmann-Grill BC, Hein R, Wach F, et al. Inhibition of fibroblast chemotaxis by recombinant human interferon gamma and interferon alpha. J Cell Physiol. 1987;130:270–5.

    Article  PubMed  CAS  Google Scholar 

  22. Wynn TA, Cheever AW, Jankovic D, et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature. 1995;376:594–6.

    Article  PubMed  CAS  Google Scholar 

  23. Gurujeyalakshmi G, Giri SN. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression. Exp Lung Res. 1995;21:791–808.

    Article  PubMed  CAS  Google Scholar 

  24. Oldroyd SD, Thomas GL, Gabbiani G, et al. Interferon-gamma inhibits experimental renal fibrosis. Kidney Int. 1999;56:2116–27.

    Article  PubMed  CAS  Google Scholar 

  25. Higashi K, Inagaki Y, Fujimori K, et al. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3. J Biol Chem. 2003;278:43470–9.

    Article  PubMed  CAS  Google Scholar 

  26. Higashi K, Tomigahara Y, Shiraki H, et al. A novel small compound that promotes nuclear translocation of YB-1 ameliorates experimental hepatic fibrosis in mice. J Biol Chem. 2011;286:4485–92.

    Article  PubMed  CAS  Google Scholar 

  27. Imai J, Hozumi K, Sumiyoshi H, et al. Anti-fibrotic effects of a novel small compound on the regulation of cytokine production in a mouse model of colorectal fibrosis. Biochem Biophys Res Commun. 2015;468:554–60.

    Article  PubMed  CAS  Google Scholar 

  28. King TE Jr, Albera C, Bradford WZ, et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet. 2009;374:222–8.

    Article  PubMed  CAS  Google Scholar 

  29. Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007;117:3786–99.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.

    Article  PubMed  CAS  Google Scholar 

  31. Gasse P, Riteau N, Charron S, Girre S, Fick L, Pétrilli V, Tschopp J, Lagente V, Quesniaux VF, Ryffel B, Couillin I. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 2009;179:903–13.

    Article  PubMed  CAS  Google Scholar 

  32. Lee KY, Ito K, Hayashi R, Jazrawi EP, Barnes PJ, Adcock IM. NF-kappaB and activator protein 1 response elements and the role of histone modifications in IL-1beta-induced TGF-beta1 gene transcription. J Immunol. 2006;176:603–15.

    Article  PubMed  CAS  Google Scholar 

  33. Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57:642–54.

    Article  PubMed  CAS  Google Scholar 

  34. Mancini R, Benedetti A, Jezequel AM. An interleukin-1 receptor antagonist decreases fibrosis induced by dimethylnitrosamine in rat liver. Virchows Arch. 1994;424:25–31.

    Article  PubMed  CAS  Google Scholar 

  35. Graham MF, Willey A, Adams J, Yager D, Diegelmann RF. Interleukin 1 beta downregulates collagen and augments collagenase expression in human intestinal smooth muscle cells. Gastroenterology. 1996;110(2):344–50.

    Article  PubMed  CAS  Google Scholar 

  36. Graham MF, Willey A, Zhu YN, Yager DR, Sugerman HJ, Diegelmann RF. Corticosteroids repress the interleukin 1 beta-induced secretion of collagenase in human intestinal smooth muscle cells. Gastroenterology. 1997;113(6):1924–9.

    Article  PubMed  CAS  Google Scholar 

  37. Dhimolea E. Canakinumab. MAbs. 2010;2(1):3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ali S. The dual function cytokine IL-33 interacts with the transcription factor NF-kB to dampen NF-kB-stimulated gene transcription. J Immunol. 2011;187:1609–16.

    Article  PubMed  CAS  Google Scholar 

  39. Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine. 2017;S1043-4666(17):30189–8.

    Google Scholar 

  40. Mahapatro M, Foersch S, Hefele M, He G-W, Giner-Ventura E, et al. Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep. 2016;15(8):1743–56.

    Article  PubMed  CAS  Google Scholar 

  41. Pastorelli L, De Salvo C, Vecchi M, Pizarro TT. The role of IL-33 in gut mucosal inflammation. Mediat Inflamm. 2013;2013:608187.

    Article  CAS  Google Scholar 

  42. Sponheim J, Pollheimer J, Olsen T, Balogh J, Hammarström C, Loos T, et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am J Pathol. 2010;177(6):2804–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Groβ P, Doser K, Falk W, Obermeier F, Hofmann C. IL-33 attenuates development and perpetuation of chronic intestinal inflammation. Inflamm Bowel Dis. 2012;18(10):1900–9.

    Article  PubMed  Google Scholar 

  44. Sedhom MAK, Pichery M, Murdoch JR, Foligné B, Ortega N, Normand S, et al. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut. 2013;62(12):1714–23.

    Article  PubMed  CAS  Google Scholar 

  45. Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikawa T, et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45(10):999–1007.

    Article  PubMed  CAS  Google Scholar 

  46. Masterson JC, Capocelli KE, Hosford L, Biette K, McNamee EN, de Zoeten EF, et al. Eosinophils and IL-33 perpetuate chronic inflammation and fibrosis in a pediatric population with stricturing Crohn’s ileitis. Inflamm Bowel Dis. 2015;21(10):2429–40.

    PubMed  Google Scholar 

  47. Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, et al. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol. 2017;812:18.

    Article  PubMed  CAS  Google Scholar 

  48. Tan Z, Liu Q, Jiang R, Lv L, Shoto SS, et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol Immunol. 2017. https://doi.org/10.1038/cmi.2016.63.

  49. Vasseur P, Dion S, Filliol A, Genet V, Lucas-Clerc C, et al. Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.18335.

  50. Doucet C, Brouty-Boye D, Pottin-Clemenceau C, et al. Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest. 1998;101:2129–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4:583–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jakubzick C, Kunkel SL, Puri RK, et al. Therapeutic targeting of IL-4- and IL-13-responsive cells in pulmonary fibrosis. Immunol Res. 2004;30:339–49.

    Article  PubMed  CAS  Google Scholar 

  53. Aoudjehane L, Pissaia A Jr, Scatton O, et al. Interleukin-4 induces the activation and collagen production of cultured human intrahepatic fibroblasts via the STAT-6 pathway. Lab Investig. 2008;88:973–85.

    Article  PubMed  CAS  Google Scholar 

  54. Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111:677–90; quiz 691.

    Article  CAS  PubMed  Google Scholar 

  55. Bailey JR, Bland PW, Tarlton JF, et al. IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One. 2012;7:e52332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Biancheri P, Di Sabatino A, Ammoscato F, et al. Absence of a role for interleukin-13 in inflammatory bowel disease. Eur J Immunol. 2014;44:370–85.

    Article  PubMed  CAS  Google Scholar 

  57. Fichtner-Feigl S, Strober W, Kawakami K, et al. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12:99–106.

    Article  PubMed  CAS  Google Scholar 

  58. Fichtner-Feigl S, Young CA, Kitani A, et al. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008;135:2003–13, 2013.e1-7.

    Article  PubMed  CAS  Google Scholar 

  59. Chiaramonte MG, Donaldson DD, Cheever AW, et al. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Maloy KJ. The Interleukin-23/Interleukin-17 axis in intestinal inflammation. J Intern Med. 2008;263:584–90.

    Article  PubMed  CAS  Google Scholar 

  61. Hata K, Andoh A, Shimada M, et al. IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2002;282:G1035–44.

    Article  PubMed  CAS  Google Scholar 

  62. Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143:765–76.e1-3.

    Article  PubMed  CAS  Google Scholar 

  63. Mi S, Li Z, Yang HZ, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187:3003–14.

    Article  PubMed  CAS  Google Scholar 

  64. Baldeviano GC, Barin JG, Talor MV, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106:1646–55.

    Article  PubMed  CAS  Google Scholar 

  65. Khanna PV, Shih DQ, Haritunians T, et al. Use of animal models in elucidating disease pathogenesis in IBD. Semin Immunopathol. 2014;36:541–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Biancheri P, Pender SL, Ammoscato F, et al. The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013;6:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hueber W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.

    Article  PubMed  CAS  Google Scholar 

  68. Wallace KL, Zheng L, Kanazawa Y, et al. TL1A modulates the differential effect of IL-17 blockade on mucosal inflammation. Gastroenterology. 2014;146:S-133.

    Article  Google Scholar 

  69. Kitson J, Raven T, Jiang YP, et al. A death-domain-containing receptor that mediates apoptosis. Nature. 1996;384:372–5.

    Article  PubMed  CAS  Google Scholar 

  70. Chinnaiyan AM, O'Rourke K, Yu GL, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. 1996;274:990–2.

    Article  PubMed  CAS  Google Scholar 

  71. Tan KB, Harrop J, Reddy M, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 1997;204:35–46.

    Article  PubMed  CAS  Google Scholar 

  72. Bodmer JL, Burns K, Schneider P, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity. 1997;6:79–88.

    Article  PubMed  CAS  Google Scholar 

  73. Al-Lamki RS, Wang J, Tolkovsky AM, et al. TL1A both promotes and protects from renal inflammation and injury. J Am Soc Nephrol. 2008;19:953–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bamias G, Mishina M, Nyce M, et al. Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proc Natl Acad Sci U S A. 2006;103:8441–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Prehn JL, Thomas LS, Landers CJ, et al. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 2007;178:4033–8.

    Article  PubMed  CAS  Google Scholar 

  76. Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 1998;9:267–76.

    Article  PubMed  CAS  Google Scholar 

  77. Wang EC, Thern A, Denzel A, et al. DR3 regulates negative selection during thymocyte development. Mol Cell Biol. 2001;21:3451–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wen L, Zhuang L, Luo X, et al. TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem. 2003;278:39251–8.

    Article  PubMed  CAS  Google Scholar 

  79. Pappu BP, Borodovsky A, Zheng TS, et al. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med. 2008;205:1049–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Migone TS, Zhang J, Luo X, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16:479–92.

    Article  PubMed  CAS  Google Scholar 

  81. Meylan F, Davidson TS, Kahle E, et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008;29:79–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Shih DQ, Zheng L, Zhang X, et al. Inhibition of a novel fibrogenic factor Tl1a reverses established colonic fibrosis. Mucosal Immunol. 2014;7:1492–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Picornell Y, Mei L, Taylor K, et al. TNFSF15 is an ethnic-specific IBD gene. Inflamm Bowel Dis. 2007;13:1333–8.

    Article  PubMed  Google Scholar 

  84. Michelsen KS, Thomas LS, Taylor KD, et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One. 2009;4:e4719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hirano A, Yamazaki K, Umeno J, et al. Association study of 71 European Crohn’s disease susceptibility loci in a Japanese population. Inflamm Bowel Dis. 2013;19:526–33.

    Article  PubMed  Google Scholar 

  86. Shih DQ, Barrett R, Zhang X, et al. Constitutive TL1A (TNFSF15) expression on lymphoid or myeloid cells leads to mild intestinal inflammation and fibrosis. PLoS One. 2011;6:e16090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Meylan F, Song YJ, Fuss I, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 2011;4:172–85.

    Article  PubMed  CAS  Google Scholar 

  88. Barrett R, Zhang X, Koon HW, et al. Constitutive TL1A expression under colitogenic conditions modulates the severity and location of gut mucosal inflammation and induces fibrostenosis. Am J Pathol. 2012;180:636–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18:816–27.

    Article  PubMed  CAS  Google Scholar 

  90. Wells RG. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2000;279:G845–50.

    Article  PubMed  CAS  Google Scholar 

  91. McKaig BC, McWilliams D, Watson SA, et al. Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease. Am J Pathol. 2003;162:1355–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mulsow JJ, Watson RW, Fitzpatrick JM, et al. Transforming growth factor-beta promotes pro-fibrotic behavior by serosal fibroblasts via PKC and ERK1/2 mitogen activated protein kinase cell signaling. Ann Surg. 2005;242:880–7, discussion 887-9.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Flier SN, Tanjore H, Kokkotou EG, et al. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010;285:20202–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tsukada S, Westwick JK, Ikejima K, et al. SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J Biol Chem. 2005;280:10055–64.

    Article  PubMed  CAS  Google Scholar 

  95. Denton CP, Merkel PA, Furst DE, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56:323–33.

    Article  PubMed  CAS  Google Scholar 

  96. Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125:2795–807.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Medina C, Santos-Martinez MJ, Santana A, et al. Transforming growth factor-beta type 1 receptor (ALK5) and Smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis. J Pathol. 2011;224:461–72.

    Article  PubMed  CAS  Google Scholar 

  98. Park SA, Kim MJ, Park SY, et al. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-beta/Smad and ROS signaling. Cell Mol Life Sci. 2015;72:2023–39.

    Article  PubMed  CAS  Google Scholar 

  99. Moon JA, Kim HT, Cho IS, et al. IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int. 2006;70:1234–43.

    Article  PubMed  CAS  Google Scholar 

  100. Engebretsen KV, Skardal K, Bjornstad S, et al. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J Mol Cell Cardiol. 2014;76:148–57.

    Article  PubMed  CAS  Google Scholar 

  101. Koh RY, Lim CL, Uhal BD, et al. Inhibition of transforming growth factor-beta via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol Med Rep. 2015;11:3808–13.

    Article  PubMed  CAS  Google Scholar 

  102. Iyer SN, Wild JS, Schiedt MJ, et al. Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med. 1995;125:779–85.

    PubMed  CAS  Google Scholar 

  103. Shimizu T, Kuroda T, Hata S, et al. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int. 1998;54:99–109.

    Article  PubMed  CAS  Google Scholar 

  104. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377:1760–9.

    Article  PubMed  CAS  Google Scholar 

  105. King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.

    Article  PubMed  CAS  Google Scholar 

  106. Mesa RA, Tefferi A, Elliott MA, et al. A phase II trial of pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone), a novel anti-fibrosing agent, in myelofibrosis with myeloid metaplasia. Br J Haematol. 2001;114:111–3.

    Article  PubMed  CAS  Google Scholar 

  107. Angulo P, MacCarty RL, Sylvestre PB, et al. Pirfenidone in the treatment of primary sclerosing cholangitis. Dig Dis Sci. 2002;47:157–61.

    Article  PubMed  CAS  Google Scholar 

  108. Burke JP, Watson RW, Murphy M, et al. Simvastatin impairs smad-3 phosphorylation and modulates transforming growth factor beta1-mediated activation of intestinal fibroblasts. Br J Surg. 2009;96:541–51.

    Article  PubMed  CAS  Google Scholar 

  109. Abe Y, Murano M, Murano N, et al. Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig Dis Sci. 2012;57:335–44.

    Article  PubMed  CAS  Google Scholar 

  110. Bataller R, Gines P, Nicolas JM, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.

    Article  PubMed  CAS  Google Scholar 

  111. Jaszewski R, Tolia V, Ehrinpreis MN, et al. Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterology. 1990;98:1543–8.

    Article  PubMed  CAS  Google Scholar 

  112. Wengrower D, Zanninelli G, Pappo O, et al. Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis. 2004;10:536–45.

    Article  PubMed  Google Scholar 

  113. Wengrower D, Zanninelli G, Latella G, et al. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012;26:33–9.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sullivan BP, Weinreb PH, Violette SM, et al. The coagulation system contributes to alphaVbeta6 integrin expression and liver fibrosis induced by cholestasis. Am J Pathol. 2010;177:2837–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Flynn RS, Murthy KS, Grider JR, et al. Endogenous IGF-I and alphaVbeta3 integrin ligands regulate increased smooth muscle hyperplasia in stricturing Crohn’s disease. Gastroenterology. 2010;138:285–93.

    Article  PubMed  CAS  Google Scholar 

  116. Li C, Flynn RS, Grider JR, et al. Increased activation of latent TGF-beta1 by alphaVbeta3 in human Crohn’s disease and fibrosis in TNBS colitis can be prevented by cilengitide. Inflamm Bowel Dis. 2013;19:2829–39.

    Article  PubMed  Google Scholar 

  117. Di Sabatino A, Jackson CL, Pickard KM, et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58:777–89.

    Article  PubMed  Google Scholar 

  118. Latella G, Vetuschi A, Sferra R, et al. Smad3 loss confers resistance to the development of trinitrobenzene sulfonic acid-induced colorectal fibrosis. Eur J Clin Investig. 2009;39:145–56.

    Article  CAS  Google Scholar 

  119. Latella G, Vetuschi A, Sferra R, et al. Targeted disruption of Smad3 confers resistance to the development of dimethylnitrosamine-induced hepatic fibrosis in mice. Liver Int. 2009;29:997–1009.

    Article  PubMed  CAS  Google Scholar 

  120. Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125:178–91.

    Article  PubMed  CAS  Google Scholar 

  121. Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190:995–1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Louis H, Van Laethem JL, Wu W, et al. Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology. 1998;28:1607–15.

    Article  PubMed  CAS  Google Scholar 

  123. Nakagome K, Dohi M, Okunishi K, et al. In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-beta in the lung. Thorax. 2006;61:886–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Jin Y, Liu R, Xie J, et al. Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Lab Investig. 2013;93:801–11.

    Article  PubMed  CAS  Google Scholar 

  125. Aithal GP, Craggs A, Day CP, et al. Role of polymorphisms in the interleukin-10 gene in determining disease susceptibility and phenotype in inflamatory bowel disease. Dig Dis Sci. 2001;46:1520–5.

    Article  PubMed  CAS  Google Scholar 

  126. Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol. 2013;19:3931–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported NIH T32 DK07180-43 (NJ), Specialty Training and Advanced Research (STAR) Program at UCLA (NJ), NIH R01 DK056328-16 (NJ, SRT and DQS), NIH K08 Career Development Award DK093578 (DQS), and the F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute (NJ, SRT and DQS).

Conflict of Interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Q. Shih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacob, N., Targan, S.R., Shih, D.Q. (2018). Cytokine and Anti-Cytokine Agents as Future Therapeutics for Fibrostenosing IBD. In: Rieder, F. (eds) Fibrostenotic Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90578-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90578-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90577-8

  • Online ISBN: 978-3-319-90578-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics