Skip to main content

The Future of Intestinal Fibrosis Imaging

  • Chapter
  • First Online:
Fibrostenotic Inflammatory Bowel Disease

Abstract

Though the capabilities of available imaging technologies to assess intestinal damage have substantially improved, emerging alternative non-invasive imaging methods may offer advancements in detecting and quantifying intestinal fibrosis in the inflammatory bowel diseases. Both the immediate clinical need to measure fibrosis for therapeutic decision-making and the near-future need for tools to assess pipeline anti-fibrotic medications highlight the demand for better non-invasive biomarkers of fibrosis in Crohn’s disease. Developing imaging platforms assessing tissue mechanical properties, perfusion characteristics, and structural protein content provide new perspectives and possibilities for approaching intestinal fibrosis quantitation. In this chapter, we will discuss existing, emerging, and experimental imaging methods using ultrasound elastography, novel MRI sequences, and photoacoustic imaging to measure fibrosis in Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horsthuis K, Bipat S, Bennink RJ, Stoker J. Inflammatory bowel disease diagnosed with US, MR, scintigraphy, and CT: meta-analysis of prospective studies. Radiology. 2008;247(1):64–79.

    Article  PubMed  Google Scholar 

  2. Panés J, Bouzas R, Chaparro M, García-Sánchez V, Gisbert JP, Martínez de Guereñu B, et al. Systematic review: the use of ultrasonography, computed tomography and magnetic resonance imaging for the diagnosis, assessment of activity and abdominal complications of Crohn’s disease. Aliment Pharmacol Ther. 2011;34(2):125–45.

    Article  PubMed  Google Scholar 

  3. Ordás I, Rimola J, Rodriguez S, Paredes JM, Martínez-Pérez MJ, Blanc E, et al. Accuracy of magnetic resonance enterography in assessing response to therapy and mucosal healing in patients with Crohn’s disease. Gastroenterology. 2014;146(2):374–82.e1.

    Article  CAS  PubMed  Google Scholar 

  4. Adler J, Punglia DR, Dillman JR, Polydorides AD, Dave M, Al-Hawary MM, et al. Computed tomography enterography findings correlate with tissue inflammation, not fibrosis in resected small bowel Crohn’s disease. Inflamm Bowel Dis. 2012;18(5):849–56.

    Article  PubMed  Google Scholar 

  5. Chiorean MV, Sandrasegaran K, Saxena R, Maglinte DD, Nakeeb A, Johnson CS. Correlation of CT enteroclysis with surgical pathology in Crohn’s disease. Am J Gastroenterol. 2007;102(11):2541–50.

    Article  PubMed  Google Scholar 

  6. Pariente B, Mary J-Y, Danese S, Chowers Y, De Cruz P, D’Haens G, et al. Development of the Lémann index to assess digestive tract damage in patients with Crohn’s disease. Gastroenterology. 2015;148(1):52–3.

    Article  PubMed  Google Scholar 

  7. Zappa M, Stefanescu C, Cazals-Hatem D, Bretagnol F, Deschamps L, Attar A, et al. Which magnetic resonance imaging findings accurately evaluate inflammation in small bowel Crohn’s disease? A retrospective comparison with surgical pathologic analysis. Inflamm Bowel Dis. 2011;17(4):984–93.

    Article  PubMed  Google Scholar 

  8. Johnson LA, Luke A, Sauder K, Moons DS, Horowitz JC, Higgins PDR. Intestinal fibrosis is reduced by early elimination of inflammation in a mouse model of IBD: impact of a “Top-Down” approach to intestinal fibrosis in mice. Inflamm Bowel Dis. 2012;18(3):460–71.

    Article  PubMed  Google Scholar 

  9. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  PubMed  Google Scholar 

  10. Castéra L, Foucher J, Bernard P-H, Carvalho F, Allaix D, Merrouche W, et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology. 2010;51:828.

    PubMed  Google Scholar 

  11. Correas J-M, Tissier A-M, Khairoune A, Vassiliu V, Méjean A, Hélénon O, et al. Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. 2015;275(1):280–9.

    Article  PubMed  Google Scholar 

  12. Stidham RW, Xu J, Johnson LA, Kim K, Moons DS, McKenna BJ, et al. Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease. Gastroenterology. 2011;141(3):819–826.e1.

    Article  PubMed  Google Scholar 

  13. Johnson LA, Rodansky ES, Sauder KL, Horowitz JC, Mih JD, Tschumperlin DJ, et al. Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflamm Bowel Dis. 2013;19(5):891–903.

    Article  PubMed  Google Scholar 

  14. Castéra L, Forns X, Alberti A. Non-invasive evaluation of liver fibrosis using transient elastography. J Hepatol. 2008;48(5):835–47.

    Article  PubMed  Google Scholar 

  15. Ganne-Carrié N, Ziol M, de Ledinghen V, Douvin C, Marcellin P, Castéra L, et al. Accuracy of liver stiffness measurement for the diagnosis of cirrhosis in patients with chronic liver diseases. Hepatology. 2006;44(6):1511–7.

    Article  PubMed  Google Scholar 

  16. Colombo S, Belloli L, Zaccanelli M, Badia E, Jamoletti C, Buonocore M, et al. Normal liver stiffness and its determinants in healthy blood donors. Dig Liver Dis. 2011;43(3):231–6.

    Article  PubMed  Google Scholar 

  17. Castéra L. Noninvasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology. 2012;142(6):1293–4.

    Article  PubMed  Google Scholar 

  18. Friedrich-Rust M, Ong M-F, Martens S, Sarrazin C, Bojunga J, Zeuzem S, et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology. 2008;134(4):960–74.

    Article  PubMed  Google Scholar 

  19. Liu X, Squire LC. The shock-wave/turbulent boundary-layer interaction on curved surface at transonic speed. In: Turbulent shear-layer/shock-wave interactions. Berlin: Springer; 1986. p. 93–104.

    Chapter  Google Scholar 

  20. Lerner RM, Huang SR, Parker KJ. “Sonoelasticity” images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990;16(3):231–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lubinski MA, Emelianov SY, O'Donnell M. Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(1):82–96.

    Article  CAS  PubMed  Google Scholar 

  22. Li P-C, Lee W-N. An efficient speckle tracking algorithm for ultrasonic imaging. Ultrason Imaging. 2002;24(4):215–28.

    Article  PubMed  Google Scholar 

  23. Baumgart DC, Müller HP, Grittner U, Metzke D, Fischer A, Guckelberger O, et al. US-based real-time elastography for the detection of fibrotic gut tissue in patients with stricturing Crohn disease. Radiology. 2015;275(3):889–99.

    Article  PubMed  Google Scholar 

  24. Sconfienza LM, Cavallaro F, Colombi V, Pastorelli L, Tontini G, Pescatori L, et al. In-vivo axial-strain sonoelastography helps distinguish acutely-inflamed from fibrotic terminal ileum strictures in patients with Crohn’s disease: preliminary results. Ultrasound Med Biol. 2016;42(4):855–63.

    Article  PubMed  Google Scholar 

  25. Fufezan O, Asavoaie C, Tamas A, Farcau D, Serban D. Bowel elastography - a pilot study for developing an elastographic scoring system to evaluate disease activity in pediatric Crohn’s disease. Med Ultrason. 2015;17(4):422–30.

    PubMed  Google Scholar 

  26. Fraquelli M, Branchi F, Cribiù FM, Orlando S, Casazza G, Magarotto A, et al. The role of ultrasound elasticity imaging in predicting ileal fibrosis in Crohn’s disease patients. Inflamm Bowel Dis. 2015;21(11):2605–12.

    Article  PubMed  Google Scholar 

  27. Dillman JR, Stidham RW, Higgins PDR, Moons DS, Johnson LA, Rubin JM. US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model. Radiology. 2013;267(3):757–66.

    Article  PubMed  Google Scholar 

  28. Dillman JR, Stidham RW, Higgins PDR, Moons DS, Johnson LA, Keshavarzi NR, et al. Ultrasound shear wave elastography helps discriminate low-grade from high-grade bowel wall fibrosis in ex vivo human intestinal specimens. J Ultrasound Med. 2014;33(12):2115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lu C, Gui X, Chen W, Fung T, Novak K, Wilson SR. Ultrasound shear wave elastography and contrast enhancement: effective biomarkers in Crohn’s disease strictures. Inflamm Bowel Dis. 2017;23(3):421–30.

    Article  PubMed  Google Scholar 

  30. Danese S, Sans M, la Motte de C, Graziani C, West G, Phillips MH, et al. Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology. 2006;130(7):2060–73.

    Article  CAS  PubMed  Google Scholar 

  31. Tielbeek JAW, Ziech MLW, Li Z, Lavini C, Bipat S, Bemelman WA, et al. Evaluation of conventional, dynamic contrast enhanced and diffusion weighted MRI for quantitative Crohn’s disease assessment with histopathology of surgical specimens. Eur Radiol. 2014;24(3):619–29.

    Article  PubMed  Google Scholar 

  32. Rimola J, Planell N, Rodriguez S, Delgado S, Ordás I, Ramírez-Morros A, et al. Characterization of inflammation and fibrosis in Crohn’s disease lesions by magnetic resonance imaging. Am J Gastroenterol. 2015;110(3):432–40.

    Article  PubMed  Google Scholar 

  33. Rimola J, Planell N, Rodriguez S, Delgado S, Ordás I, Ramírez-Morros A, et al. Corrigendum: Characterization of inflammation and fibrosis in Crohn’s disease lesions by magnetic resonance imaging. Am J Gastroenterol. 2015;110(3):480.

    Article  PubMed  Google Scholar 

  34. Ripollés T, Rausell N, Paredes JM, Grau E, Martínez MJ, Vizuete J. Effectiveness of contrast-enhanced ultrasound for characterisation of intestinal inflammation in Crohn’s disease: a comparison with surgical histopathology analysis. J Crohns Colitis. 2013;7(2):120–8.

    Article  PubMed  Google Scholar 

  35. Dillman JR, Rubin JM, Johnson LA, Moons DS, Higgins PDR. Can contrast-enhanced sonography detect bowel wall fibrosis in mixed inflammatory and fibrotic Crohn disease lesions in an animal model? J Ultrasound Med. 2017;36(3):523–30.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saevik F, Nylund K, Hausken T, Ødegaard S, Gilja OH. Bowel perfusion measured with dynamic contrast-enhanced ultrasound predicts treatment outcome in patients with Crohn’s disease. Inflamm Bowel Dis. 2014;20(11):2029–37.

    Article  PubMed  Google Scholar 

  37. Nylund K, Jirik R, Mezl M, Leh S, Hausken T, Pfeffer F, et al. Quantitative contrast-enhanced ultrasound comparison between inflammatory and fibrotic lesions in patients with Crohn’s disease. Ultrasound Med Biol. 2013;39(7):1197–206.

    Article  PubMed  Google Scholar 

  38. Quaia E, Gennari AG, van Beek EJR. Differentiation of inflammatory from fibrotic ileal strictures among patients with Crohn’s disease through analysis of time-intensity curves obtained after microbubble contrast agent injection. Ultrasound Med Biol. 2017;43(6):1171–8.

    Article  PubMed  Google Scholar 

  39. Jacene HA, Ginsburg P, Kwon J, Nguyen GC, Montgomery EA, Bayless TM, et al. Prediction of the need for surgical intervention in obstructive Crohn’s disease by 18F-FDG PET/CT. J Nucl Med. 2009;50(11):1751–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lenze F, Wessling J, Bremer J, Ullerich H, Spieker T, Weckesser M, et al. Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: prospective comparison of 18F-FDG-PET/CT, MR-enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm Bowel Dis. 2012;18(12):2252–60.

    Article  PubMed  Google Scholar 

  41. Catalano OA, Gee MS, Nicolai E, Selvaggi F, Pellino G, Cuocolo A, et al. Evaluation of quantitative PET/MR enterography biomarkers for discrimination of inflammatory strictures from fibrotic strictures in Crohn disease. Radiology. 2015;278:792.

    Article  PubMed  Google Scholar 

  42. Wolff SD, Eng J, Balaban RS. Magnetization transfer contrast: method for improving contrast in gradient-recalled-echo images. Radiology. 1991;179(1):133–7.

    Article  CAS  PubMed  Google Scholar 

  43. Adler J, Swanson SD, Schmiedlin-Ren P, Higgins PDR, Golembeski CP, Polydorides AD, et al. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology. 2011;259(1):127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dillman JR, Swanson SD, Johnson LA, Moons DS, Adler J, Stidham RW, et al. Comparison of noncontrast MRI magnetization transfer and T2 -Weighted signal intensity ratios for detection of bowel wall fibrosis in a Crohn's disease animal model. J Magn Reson Imaging. 2015;42(3):801–10.

    Article  PubMed  Google Scholar 

  45. Pazahr S, Blume I, Frei P, Chuck N, Nanz D, Rogler G, et al. Magnetization transfer for the assessment of bowel fibrosis in patients with Crohn’s disease: initial experience. MAGMA. 2013;26(3):291–301.

    Article  CAS  PubMed  Google Scholar 

  46. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335(6075):1458–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–61.

    Article  PubMed  Google Scholar 

  48. Lei H, Johnson LA, Liu S, Moons DS, Ma T, Zhou Q, et al. Characterizing intestinal inflammation and fibrosis in Crohn’s disease by photoacoustic imaging: feasibility study. Biomed Opt Express. 2016;7(7):2837–48.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, et al. Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med. 2017;376(13):1292–4.

    Article  PubMed  Google Scholar 

  50. Rath T, Bojarski C, Neurath MF, Atreya R. Molecular imaging of mucosal α4β7 integrin expression with the fluorescent anti-adhesion antibody vedolizumab in Crohn’s disease. Gastrointest Endosc. 2017;86:406.

    Article  PubMed  Google Scholar 

  51. Van den Brande JMH, Koehler TC, Zelinkova Z, Bennink RJ, te Velde AA, ten FJW C, et al. Prediction of antitumour necrosis factor clinical efficacy by real-time visualisation of apoptosis in patients with Crohn’s disease. Gut. 2007;56(4):509–17.

    Article  CAS  PubMed  Google Scholar 

  52. Joshi BP, Wang TD. Imaging: dynamic imaging of gut function—allowing the blind to see. Nat Rev Gastroenterol Hepatol. 2014;11(10):584–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol. 2014;9(8):631–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

NIH K23DK101687 (Stidham).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan W. Stidham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stidham, R.W., Al-Hawary, M. (2018). The Future of Intestinal Fibrosis Imaging. In: Rieder, F. (eds) Fibrostenotic Inflammatory Bowel Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90578-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90578-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90577-8

  • Online ISBN: 978-3-319-90578-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics