Skip to main content

The Cut-Off Lemma and a Maximum Principle

  • Chapter
  • First Online:
  • 555 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 91))

Abstract

In this chapter we establish a maximum principle type result that provides pointwise control on minimal solutions. In contrast to the usual maximum principle, it does not hold for solutions in general, not even for local minimizers in the scalar case. We obtain it as a corollary of a replacement lemma modeled after Lemmas 2.4 and 2.5.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In particular, \({\widehat {\mathbf {H}}}\) allows for potentials that vanish in a ball centered in a.

  2. 2.

    cf. related work of Casten-Holland [6], and independently Matano [14].

References

  1. Alikakos, N.D., Fusco, G.: A maximum principle for systems with variational structure and an application to standing waves. J. Eur. Math. Soc. 17(7), 1547–1567 (2015)

    Article  MathSciNet  Google Scholar 

  2. Antonopoulos, P., Smyrnelis, P.: A maximum principle for the system Δu −∇W(u) = 0. C. R. Acad. Sci. Paris Ser. I 354, 595–600 (2016)

    Google Scholar 

  3. Ball, J.M., Crooks, E.C.M.: Local minimizers and planar interfaces in a phase-transition model with interfacial energy. Calc. Var. Partial Differ. Equ. 40(3), 501–538 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bates, S.M.: Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Am. Math. Soc. 117(1), 279–283 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Boccardo, L., Ferone, V., Fusco, N., Orsina, L.: Regularity of minimizing sequences for functionals of the Calculus of Variations via the Ekeland principle. Differ. Integral Equ. 12(1), 119–135 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Casten, R.G., Holland, C.J.: Instability results for reaction-diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27, 266–273 (1978)

    Article  MathSciNet  Google Scholar 

  7. Czarnecki, A., Kulczychi, M., Lubawski, W.: On the connectedness of boundary and complement for domains. Ann. Pol. Math. 103, 189–191 (2011)

    Article  MathSciNet  Google Scholar 

  8. de Pascale, L.: The Morse-Sard theorem in Sobolev spaces. Indiana Univ. Math. J. 50(3), 1371–1386 (2001)

    Article  MathSciNet  Google Scholar 

  9. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  10. Evans, L.C.: A strong maximum principle for parabolic systems in a convex set with arbitrary boundary. Proc. Am. Math. Soc. 138(9), 3179–3185 (2010)

    Article  MathSciNet  Google Scholar 

  11. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. R. Soc. Edinb. Sect. A 111(1–2), 69–84 (1989)

    Article  MathSciNet  Google Scholar 

  13. Lions, P.L.: The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part 1. Ann. I. H. Poincaré Anal. Nonlinear 1, 109–145 (1984)

    Google Scholar 

  14. Matano, H.: Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)

    Article  MathSciNet  Google Scholar 

  15. Modica, L., Mortola, S.: Un esempio di Γ-convergenza. Boll. Unione Mat. Ital. Sez B 14, 285–299 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. A Series of Modern Surveys in Mathematics, vol. 34, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  17. Villegas, S.: Nonexistence of nonconstant global minimizers with limit at of semilinear elliptic equations in all of \({\mathbb R}^N\). Commun. Pure Appl. Anal. 10(6), 1817–1821 (2011)

    Google Scholar 

  18. Weinberger, H.: Invariant sets for weakly coupled parabolic and elliptic systems. Rend. di Matem. Ser. VI 8, 295–310 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alikakos, N.D., Fusco, G., Smyrnelis, P. (2018). The Cut-Off Lemma and a Maximum Principle. In: Elliptic Systems of Phase Transition Type. Progress in Nonlinear Differential Equations and Their Applications, vol 91. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-90572-3_4

Download citation

Publish with us

Policies and ethics