Skip to main content

Connections

  • Chapter
  • First Online:
  • 541 Accesses

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 91))

Abstract

We begin by giving a concise proof of the existence of a heteroclinic connection (Theorem 2.1). The experienced reader then can move on to Sect. 2.6. In Sect. 2.4 we develop an alternative approach via constrained minimization. Most readers will find this easier and also good preparation for the polar form and the cut-off lemma in Chap. 4. In Sect. 2.6 we consider the connection problem for an unbalanced double-well potential, and handle it via the constrained method. Finally in Sect. 2.7 we investigate the failure of the existence of a connection when three or more global minima are present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If u 0 is minimal and bounded, then it satisfies the equipartition relation (cf. Theorem 2.3).

  2. 2.

    If m = 0, it follows that g(z(t)) = g(α), and since g is analytic z(t) = α. Thus, if u(x) is a heteroclinic, it follows that m ≠ 0 and so g(z i) ≠ g(z j).

References

  1. Alberti, G.: Variational models for phase transitions, an approach via Gamma convergence. In: Ambrosio, L., Dancer, N. (eds.) Calculus of Variations and Partial Differential Equations, pp. 95–114. Springer, Berlin (2000)

    Chapter  Google Scholar 

  2. Alikakos, N.D., Fusco, G.: On the connection problem for potentials with several global minima. Indiana Univ. Math. J. 57, 1871–1906 (2008)

    Article  MathSciNet  Google Scholar 

  3. Alikakos, N.D., Betelú, S.I., Chen, X.: Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energies. Eur. J. Appl. Math. 17, 525–556 (2006)

    Article  Google Scholar 

  4. Alikakos, N.D., Katzourakis, N.: Heteroclinic travelling waves of gradient diffusion systems. Trans. Am. Math. Soc. 363, 1362–1397 (2011)

    Article  MathSciNet  Google Scholar 

  5. André, N., Shafrir, I.: On a vector-valued singular perturbation problem on the sphere. In: Proceedings of the International Conference on Nonlinear Analysis, Recent Advances in Nonlinear Analysis, pp. 11–42. World Scientific Publishing, Singapore (2008)

    Google Scholar 

  6. Antonopoulos, P., Smyrnelis, P.: On minimizers of the Hamiltonian system u″ = ∇W(u), and on the existence of heteroclinic, homoclinic and periodic orbits. Indiana Univ. Math. J. 65(5), 1503–1524 (2016)

    Article  MathSciNet  Google Scholar 

  7. Colding, T.H., Minicozzi, W.P.: A Course in Minimal Surfaces. Graduate Studies in Mathematics, vol. 121. American Mathematical Society, Providence (2011)

    Google Scholar 

  8. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4, 693–727 (1991)

    Article  MathSciNet  Google Scholar 

  9. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361 (1977)

    Article  MathSciNet  Google Scholar 

  10. Fusco, G., Gronchi, G.F., Novaga, M.: On the existence of connecting orbits for critical values of the energy. J. Differ. Equ. 263, 8848–8872 (2017)

    Article  MathSciNet  Google Scholar 

  11. Fusco, G., Gronchi, G.F., Novaga, M.: On the existence of heteroclinic connections. Sao Paulo J. Math. Sci. 12, 1–14 (2017)

    MATH  Google Scholar 

  12. Heinze, S.: Travelling waves for semilinear parabolic partial differential equations in cylindrical domains. PhD thesis, Heidelberg University (1988)

    Google Scholar 

  13. Heinze, S., Papanicolaou, G., Stevens, A.: Variational principles for propagation speeds in inhomogeneous media. SIAM J. Appl. Math. 63(1), 129–148 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Katzourakis, N.: On the loss of compactness in the vectorial heteroclinic connection problem. Proc. Roy. Soc. Edinb. Sect. A 146(3), 595–608 (2016)

    Article  MathSciNet  Google Scholar 

  15. Lin, F., Pan, X.B., Wang, C.: Phase transition for potentials of high-dimensional wells. Commun. Pure Appl. Math. 65(6), 833–888 (2012)

    Article  MathSciNet  Google Scholar 

  16. Lucia, M., Muratov, C., Novaga, M.: Existence of traveling wave solutions for Ginzburg-Landau-type problems in infinite cylinders. Arch. Ration. Mech. Anal. 188(3), 475–508 (2008)

    Article  MathSciNet  Google Scholar 

  17. Modica, L.: A Gradient bound and a Liouville Theorem for nonlinear Poisson equations. Commun. Pure. Appl. Math. 38(5), 679–684 (1985)

    Article  MathSciNet  Google Scholar 

  18. Monteil, A., Santambrogio, F.: Metric methods for heteroclinic connections. Math. Methods Appl. Sci. 41(3), 1019–1024 (2018)

    Article  MathSciNet  Google Scholar 

  19. Muratov, C.B.: A global variational structure and propagation of disturbances in reacting-diffusion systems of gradient type. Discrete Contin. Dyn. Syst. Ser. B 4, 867–892 (2004)

    Article  MathSciNet  Google Scholar 

  20. Rabinowitz, P.H.: Periodic and heteroclinic orbits for a periodic hamiltonian system. Ann. Inst. Henri Poincaré 6(5), 331–346 (1989)

    Article  MathSciNet  Google Scholar 

  21. Risler, R.E.: Global convergence towards travelling fronts in nonlinear parabolic systems with a gradient structure. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 25(2), 381–424 (2008)

    Article  MathSciNet  Google Scholar 

  22. Smyrnelis, P.: Gradient estimates for semilinear elliptic systems and other related results. Proc. Roy. Soc. Edinb. Sect. A 145(6), 1313–1330 (2015)

    Article  MathSciNet  Google Scholar 

  23. Stefanopoulos, V.: Heteroclinic connections for multiple well potentials: the anisotropic case. Proc. Roy. Soc. Edinb. Sect. A 138, 1313–1330 (2008)

    Article  MathSciNet  Google Scholar 

  24. Sourdis, C.: The heteroclinic connection problem for general double-well potentials. Mediterr. J. Math. 13, 4693–4710 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101(3), 209–260 (1988)

    Article  MathSciNet  Google Scholar 

  26. Sternberg, P.: Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21, 799–807 (1991)

    Article  MathSciNet  Google Scholar 

  27. Sternberg, P., Zuniga, A.: On the heteroclinic problem for multi-well gradient systems. J. Differ. Equ. 261, 3987–4007 (2016)

    Article  MathSciNet  Google Scholar 

  28. Terman, D.: Infinitely many traveling wave solutions of a gradient system. Trans. Am. Math. Soc. 301(2), 537–556 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alikakos, N.D., Fusco, G., Smyrnelis, P. (2018). Connections. In: Elliptic Systems of Phase Transition Type. Progress in Nonlinear Differential Equations and Their Applications, vol 91. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-90572-3_2

Download citation

Publish with us

Policies and ethics