Skip to main content

Microbiome and Gut Immunity: The Epithelium

  • Chapter
  • First Online:
The Gut Microbiome in Health and Disease
  • 3336 Accesses

Abstract

The intestinal epithelium not only plays a fundamental role in negotiating a homeostatic host-microbial relation but also represents the first line of defense against pathogenic microbes and microbial agents. As a consequence intestinal epithelial cells have developed a variety of mechanisms to respond to commensal and non-commensal microbes. Accordingly intestinal epithelial cells can physically restrict the translocation of potentially harmful microorganisms from the intestinal tract into the surrounding tissue by providing a physical barrier but also release antimicrobial peptides and mucus that control microbial composition and location. Despite its barrier function, the intestinal epithelium has an important function in translating luminal signals from the barrier surface to the underlying mucosal immune system. Defects in one of these functions can have tremendous effects on intestinal homeostasis and have been identified as key factors in the pathogenesis of intestinal inflammation. In this chapter we will discuss the role of the intestinal epithelium during host-microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolph, T. E., Tomczak, M. F., Niederreiter, L., Ko, H. J., Bock, J., Martinez-Naves, E., Glickman, J. N., Tschurtschenthaler, M., Hartwig, J., Hosomi, S., et al. (2013). Paneth cells as a site of origin for intestinal inflammation. Nature, 503, 272–276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alves-Filho, J. C., Sonego, F., Souto, F. O., Freitas, A., Verri, W. A., Jr., Auxiliadora-Martins, M., Basile-Filho, A., McKenzie, A. N., Xu, D., Cunha, F. Q., & Liew, F. Y. (2010). Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nature Medicine, 16, 708–712.

    Article  PubMed  CAS  Google Scholar 

  • Artis, D. (2008). Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology, 8, 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Ayabe, T., Ashida, T., Kohgo, Y., & Kono, T. (2004). The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends in Microbiology, 12, 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Barker, N. (2014). Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nature Reviews Molecular Cell Biology, 15, 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Barker, N., van de Wetering, M., & Clevers, H. (2008). The intestinal stem cell. Genes & Development, 22, 1856–1864.

    Article  CAS  Google Scholar 

  • Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157, 121–141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bevins, C. L., & Salzman, N. H. (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology, 9, 356–368.

    Article  PubMed  CAS  Google Scholar 

  • Biswas, A., Liu, Y. J., Hao, L., Mizoguchi, A., Salzman, N. H., Bevins, C. L., & Kobayashi, K. S. (2010). Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proceedings of the National Academy of Sciences of the United States of America, 107, 14739–14744.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjerknes, M., & Cheng, H. (1981). The stem-cell zone of the small intestinal epithelium. IV. Effects of resecting 30% of the small intestine. The American Journal of Anatomy, 160, 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Bjerknes, M., & Cheng, H. (2005). Gastrointestinal stem cells. II. Intestinal stem cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 289, G381–G387.

    Article  PubMed  CAS  Google Scholar 

  • Blazejewski, A. J., Thiemann, S., Schenk, A., Pils, M. C., Galvez, E. J. C., Roy, U., Heise, U., de Zoete, M. R., Flavell, R. A., & Strowig, T. (2017). Microbiota normalization reveals that canonical caspase-1 activation exacerbates chemically induced intestinal inflammation. Cell Reports, 19, 2319–2330.

    Article  PubMed  CAS  Google Scholar 

  • Buffa, R., Capella, C., Fontana, P., Usellini, L., & Solcia, E. (1978). Types of endocrine cells in the human colon and rectum. Cell and Tissue Research, 192, 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Buffie, C. G., & Pamer, E. G. (2013). Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 13, 790–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bullen, T. F., Forrest, S., Campbell, F., Dodson, A. R., Hershman, M. J., Pritchard, D. M., Turner, J. R., Montrose, M. H., & Watson, A. J. (2006). Characterization of epithelial cell shedding from human small intestine. Laboratory Investigation, 86, 1052–1063.

    Article  PubMed  CAS  Google Scholar 

  • Cadwell, K., Liu, J. Y., Brown, S. L., Miyoshi, H., Loh, J., Lennerz, J. K., Kishi, C., Kc, W., Carrero, J. A., Hunt, S., et al. (2008). A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature, 456, 259–263.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadwell, K., Patel, K. K., Maloney, N. S., Liu, T. C., Ng, A. C., Storer, C. E., Head, R. D., Xavier, R., Stappenbeck, T. S., & Virgin, H. W. (2010). Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell, 141, 1135–1145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell, N., Yio, X. Y., So, L. P., Li, Y., & Mayer, L. (1999). The intestinal epithelial cell: Processing and presentation of antigen to the mucosal immune system. Immunological Reviews, 172, 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Corr, S. C., Gahan, C. C., & Hill, C. (2008). M-cells: Origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunology and Medical Microbiology, 52, 2–12.

    Article  PubMed  CAS  Google Scholar 

  • Crosnier, C., Stamataki, D., & Lewis, J. (2006). Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control. Nature Reviews Genetics, 7, 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert, A. P., Fisher, S. A., Mirza, M. M., King, K., Hampe, J., Croucher, P. J., Mascheretti, S., Sanderson, J., Forbes, A., Mansfield, J., et al. (2002). The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology, 122, 867–874.

    Article  PubMed  CAS  Google Scholar 

  • Dahan, S., Roth-Walter, F., Arnaboldi, P., Agarwal, S., & Mayer, L. (2007). Epithelia: Lymphocyte interactions in the gut. Immunological Reviews, 215, 243–253.

    Article  PubMed  CAS  Google Scholar 

  • de Santa Barbara, P., van den Brink, G. R., & Roberts, D. J. (2003). Development and differentiation of the intestinal epithelium. Cellular and Molecular Life Sciences, 60, 1322–1332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donaldson, G. P., Lee, S. M., & Mazmanian, S. K. (2016). Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 14, 20–32.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhoffer, G. T., Loftus, P. D., Yoshigi, M., Otsuna, H., Chien, C. B., Morcos, P. A., & Rosenblatt, J. (2012). Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature, 484, 546–549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elphick, D. A., & Mahida, Y. R. (2005). Paneth cells: Their role in innate immunity and inflammatory disease. Gut, 54, 1802–1809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farin, H. F., Karthaus, W. R., Kujala, P., Rakhshandehroo, M., Schwank, G., Vries, R. G., Kalkhoven, E., Nieuwenhuis, E. E., & Clevers, H. (2014). Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-gamma. The Journal of Experimental Medicine, 211, 1393–1405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furness, J. B., Rivera, L. R., Cho, H. J., Bravo, D. M., & Callaghan, B. (2013). The gut as a sensory organ. Nature Reviews Gastroenterology & Hepatology, 10, 729–740.

    Article  CAS  Google Scholar 

  • Gallo, R. L., & Hooper, L. V. (2012). Epithelial antimicrobial defence of the skin and intestine. Nature Reviews Immunology, 12, 503–516.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerbe, F., & Jay, P. (2016). Intestinal tuft cells: Epithelial sentinels linking luminal cues to the immune system. Mucosal Immunology, 9, 1353–1359.

    Article  PubMed  CAS  Google Scholar 

  • Gerbe, F., Legraverend, C., & Jay, P. (2012). The intestinal epithelium tuft cells: Specification and function. Cellular and Molecular Life Sciences, 69, 2907–2917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., Cesses, P., Garnier, L., Pouzolles, M., Brulin, B., et al. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature, 529, 226–230.

    Article  CAS  PubMed  Google Scholar 

  • Gibbons, D. L., & Spencer, J. (2011). Mouse and human intestinal immunity: Same ballpark, different players; different rules, same score. Mucosal Immunology, 4, 148–157.

    Article  PubMed  CAS  Google Scholar 

  • Girardin, S. E., Boneca, I. G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., Philpott, D. J., & Sansonetti, P. J. (2003a). Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. The Journal of Biological Chemistry, 278, 8869–8872.

    Article  PubMed  CAS  Google Scholar 

  • Girardin, S. E., Travassos, L. H., Herve, M., Blanot, D., Boneca, I. G., Philpott, D. J., Sansonetti, P. J., & Mengin-Lecreulx, D. (2003b). Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. The Journal of Biological Chemistry, 278, 41702–41708.

    Article  PubMed  CAS  Google Scholar 

  • Grencis, R. K., & Worthington, J. J. (2016). Tuft cells: A new flavor in innate epithelial immunity. Trends in Parasitology, 32, 583–585.

    Article  PubMed  CAS  Google Scholar 

  • Gronke, K., & Diefenbach, A. (2016). Tuft cell-derived IL-25 activates and maintains ILC2. Immunology and Cell Biology, 94, 221–223.

    Article  PubMed  CAS  Google Scholar 

  • Gunawardene, A. R., Corfe, B. M., & Staton, C. A. (2011). Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. International Journal of Experimental Pathology, 92, 219–231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F., & Becker, C. (2011). Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature, 477, 335–339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gunther, C., Neumann, H., Neurath, M. F., & Becker, C. (2013). Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut, 62, 1062–1071.

    Article  PubMed  CAS  Google Scholar 

  • Gunther, C., Josenhans, C., & Wehkamp, J. (2016). Crosstalk between microbiota, pathogens and the innate immune responses. International Journal of Medical Microbiology, 306, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Hall, C. A. (1997). Patient management in head injury care: A nursing perspective. Intensive & Critical Care Nursing, 13, 329–337.

    Article  CAS  Google Scholar 

  • Hasegawa, M., Yada, S., Liu, M. Z., Kamada, N., Munoz-Planillo, R., Do, N., Nunez, G., & Inohara, N. (2014). Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity, 41, 620–632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heath, J. P. (1996). Epithelial cell migration in the intestine. Cell Biology International, 20, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Hershberg, R. M., Framson, P. E., Cho, D. H., Lee, L. Y., Kovats, S., Beitz, J., Blum, J. S., & Nepom, G. T. (1997). Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing. The Journal of Clinical Investigation, 100, 204–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., Almer, S., Tysk, C., O'Morain, C. A., Gassull, M., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411, 599–603.

    Article  PubMed  CAS  Google Scholar 

  • Inohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., Fukase, K., Inamura, S., Kusumoto, S., Hashimoto, M., et al. (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. Journal of Biological Chemistry, 278, 5509–5512.

    Article  CAS  Google Scholar 

  • Ireland, H., Houghton, C., Howard, L., & Winton, D. J. (2005). Cellular inheritance of a cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Developmental Dynamics, 233, 1332–1336.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, M. E., Sjovall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology, 10, 352–361.

    Article  CAS  Google Scholar 

  • Jung, C., Hugot, J. P., & Barreau, F. (2010). Peyer’s patches: The immune sensors of the intestine. International Journal of Inflammation, 2010, 823710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamada, N., Chen, G. Y., Inohara, N., & Nunez, G. (2013). Control of pathogens and pathobionts by the gut microbiota. Nature Immunology, 14, 685–690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kambayashi, T., & Laufer, T. M. (2014). Atypical MHC class II-expressing antigen-presenting cells: Can anything replace a dendritic cell? Nature Reviews Immunology, 14, 719–730.

    Article  PubMed  CAS  Google Scholar 

  • Kaser, A., & Blumberg, R. S. (2008). Paneth cells and inflammation dance together in Crohn’s disease. Cell Research, 18, 1160–1162.

    Article  PubMed  CAS  Google Scholar 

  • Kaser, A., Lee, A. H., Franke, A., Glickman, J. N., Zeissig, S., Tilg, H., Nieuwenhuis, E. E., Higgins, D. E., Schreiber, S., Glimcher, L. H., & Blumberg, R. S. (2008). XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell, 134, 743–756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, Y. S., & Ho, S. B. (2010). Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Current Gastroenterology Reports, 12, 319–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, K. S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G., & Flavell, R. A. (2005). Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 307, 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Kokrashvili, Z., Rodriguez, D., Yevshayeva, V., Zhou, H., Margolskee, R. F., & Mosinger, B. (2009). Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology, 137, 598–606, 606 e591–592.

    Google Scholar 

  • Kvietys, P. R., & Granger, D. N. (2010). Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Annals of the New York Academy of Sciences, 1207(Suppl 1), E29–E43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamblin, G., Aubert, J. P., Perini, J. M., Klein, A., Porchet, N., Degand, P., & Roussel, P. (1992). Human respiratory mucins. The European Respiratory Journal, 5, 247–256.

    PubMed  CAS  Google Scholar 

  • Lassen, K. G., Kuballa, P., Conway, K. L., Patel, K. K., Becker, C. E., Peloquin, J. M., Villablanca, E. J., Norman, J. M., Liu, T. C., Heath, R. J., et al. (2014). Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 7741–7746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R., & Mahajan, A. (2013). Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium. Mucosal Immunology, 6, 666–677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madara, J. L. (1982). Cup cells: Structure and distribution of a unique class of epithelial cells in guinea pig, rabbit, and monkey small intestine. Gastroenterology, 83, 981–994.

    PubMed  CAS  Google Scholar 

  • Mahapatro, M., Foersch, S., Hefele, M., He, G. W., Giner-Ventura, E., McHedlidze, T., Kindermann, M., Vetrano, S., Danese, S., Gunther, C., et al. (2016). Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Reports, 15, 1743–1756.

    Article  PubMed  CAS  Google Scholar 

  • Man, A. L., Prieto-Garcia, M. E., & Nicoletti, C. (2004). Improving M cell mediated transport across mucosal barriers: Do certain bacteria hold the keys? Immunology, 113, 15–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchiando, A. M., Shen, L., Graham, W. V., Edelblum, K. L., Duckworth, C. A., Guan, Y., Montrose, M. H., Turner, J. R., & Watson, A. J. (2011). The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 140, 1208–1218 e1201–1202.

    Google Scholar 

  • Marshman, E., Booth, C., & Potten, C. S. (2002). The intestinal epithelial stem cell. BioEssays, 24, 91–98.

    Article  PubMed  Google Scholar 

  • Miller, H., Zhang, J., Kuolee, R., Patel, G. B., & Chen, W. (2007). Intestinal M cells: The fallible sentinels? World Journal of Gastroenterology, 13, 1477–1486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nature Reviews Immunology, 3, 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, M., Eidenschenk, C., Ota, N., Wong, K., Lohmann, U., Kuhl, A. A., Wang, X., Manzanillo, P., Li, Y., Rutz, S., et al. (2015). Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity, 42, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Noah, T. K., Donahue, B., & Shroyer, N. F. (2011). Intestinal development and differentiation. Experimental Cell Research, 317, 2702–2710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oboki, K., Ohno, T., Kajiwara, N., Saito, H., & Nakae, S. (2010). IL-33 and IL-33 receptors in host defense and diseases. Allergology International, 59, 143–160.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R. H., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411, 603–606.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, Y., Lala, S., Xin, W., Smith, E., Dowds, T. A., Chen, F. F., Zimmermann, E., Tretiakova, M., Cho, J. H., Hart, J., et al. (2003). Expression of NOD2 in Paneth cells: A possible link to Crohn’s ileitis. Gut, 52, 1591–1597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okumura, R., & Takeda, K. (2017). Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental & Molecular Medicine, 49, e338.

    Article  CAS  Google Scholar 

  • Ouellette, A. J. (2010). Paneth cells and innate mucosal immunity. Current Opinion in Gastroenterology, 26, 547–553.

    Article  PubMed  Google Scholar 

  • Pelaseyed, T., Bergstrom, J. H., Gustafsson, J. K., Ermund, A., Birchenough, G. M., Schutte, A., van der Post, S., Svensson, F., Rodriguez-Pineiro, A. M., Nystrom, E. E., et al. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 260, 8–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14, 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Pickert, G., Neufert, C., Leppkes, M., Zheng, Y., Wittkopf, N., Warntjen, M., Lehr, H. A., Hirth, S., Weigmann, B., Wirtz, S., et al. (2009). STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. The Journal of Experimental Medicine, 206, 1465–1472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter, E. M., Bevins, C. L., Ghosh, D., & Ganz, T. (2002). The multifaceted Paneth cell. Cellular and Molecular Life Sciences, 59, 156–170.

    Article  PubMed  CAS  Google Scholar 

  • Raetz, M., Hwang, S. H., Wilhelm, C. L., Kirkland, D., Benson, A., Sturge, C. R., Mirpuri, J., Vaishnava, S., Hou, B., Defranco, A. L., et al. (2013). Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-gamma-dependent elimination of Paneth cells. Nature Immunology, 14, 136–142.

    Article  PubMed  CAS  Google Scholar 

  • Ramanan, D., & Cadwell, K. (2016). Intrinsic defense mechanisms of the intestinal epithelium. Cell Host & Microbe, 19, 434–441.

    Article  CAS  Google Scholar 

  • Ramirez, C., & Gebert, A. (2003). Vimentin-positive cells in the epithelium of rabbit ileal villi represent cup cells but not M-cells. The Journal of Histochemistry and Cytochemistry, 51, 1533–1544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rauch, I., Deets, K. A., Ji, D. X., von Moltke, J., Tenthorey, J. L., Lee, A. Y., Philip, N. H., Ayres, J. S., Brodsky, I. E., Gronert, K., & Vance, R. E. (2017). NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity, 46, 649–659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rostan, O., Arshad, M. I., Piquet-Pellorce, C., Robert-Gangneux, F., Gangneux, J. P., & Samson, M. (2015). Crucial and diverse role of the interleukin-33/ST2 axis in infectious diseases. Infection and Immunity, 83, 1738–1748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salzman, N. H. (2010). Paneth cell defensins and the regulation of the microbiome: Detente at mucosal surfaces. Gut Microbes, 1, 401–406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sancho, E., Batlle, E., & Clevers, H. (2003). Live and let die in the intestinal epithelium. Current Opinion in Cell Biology, 15, 763–770.

    Article  PubMed  CAS  Google Scholar 

  • Sato, T., van Es, J. H., Snippert, H. J., Stange, D. E., Vries, R. G., van den Born, M., Barker, N., Shroyer, N. F., van de Wetering, M., & Clevers, H. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469, 415–418.

    Article  PubMed  CAS  Google Scholar 

  • Sellin, M. E., Maslowski, K. M., Maloy, K. J., & Hardt, W. D. (2015). Inflammasomes of the intestinal epithelium. Trends in Immunology, 36, 442–450.

    Article  PubMed  CAS  Google Scholar 

  • Shao, L., Kamalu, O., & Mayer, L. (2005). Non-classical MHC class I molecules on intestinal epithelial cells: Mediators of mucosal crosstalk. Immunological Reviews, 206, 160–176.

    Article  PubMed  CAS  Google Scholar 

  • Snoeck, V., Goddeeris, B., & Cox, E. (2005). The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes and Infection, 7, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Songhet, P., Barthel, M., Stecher, B., Muller, A. J., Kremer, M., Hansson, G. C., & Hardt, W. D. (2011). Stromal IFN-gammaR-signaling modulates goblet cell function during Salmonella Typhimurium infection. PLoS One, 6, e22459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorbara, M. T., & Philpott, D. J. (2011). Peptidoglycan: A critical activator of the mammalian immune system during infection and homeostasis. Immunological Reviews, 243, 40–60.

    Article  PubMed  CAS  Google Scholar 

  • Specian, R. D., & Oliver, M. G. (1991). Functional biology of intestinal goblet cells. The American Journal of Physiology, 260, C183–C193.

    Article  PubMed  CAS  Google Scholar 

  • Sternini, C., Anselmi, L., & Rozengurt, E. (2008). Enteroendocrine cells: A site of ‘taste’ in gastrointestinal chemosensing. Current Opinion in Endocrinology, Diabetes, and Obesity, 15, 73–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. (2012). Inflammasomes in health and disease. Nature, 481, 278–286.

    Article  PubMed  CAS  Google Scholar 

  • Thiemann, S., Smit, N., Roy, U., Lesker, T. R., Galvez, E. J. C., Helmecke, J., Basic, M., Bleich, A., Goodman, A. L., Kalinke, U., et al. (2017). Enhancement of IFNgamma production by distinct commensals ameliorates salmonella-induced disease. Cell Host & Microbe, 21, 682–694 e685.

    Google Scholar 

  • Travassos, L. H., Carneiro, L. A., Ramjeet, M., Hussey, S., Kim, Y. G., Magalhaes, J. G., Yuan, L., Soares, F., Chea, E., Le Bourhis, L., et al. (2010). Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunology, 11, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • van der Flier, L. G., & Clevers, H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual Review of Physiology, 71, 241–260.

    Article  PubMed  CAS  Google Scholar 

  • Van der Sluis, M., De Koning, B. A., De Bruijn, A. C., Velcich, A., Meijerink, J. P., Van Goudoever, J. B., Buller, H. A., Dekker, J., Van Seuningen, I., Renes, I. B., & Einerhand, A. W. (2006). Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology, 131, 117–129.

    Article  PubMed  CAS  Google Scholar 

  • Velcich, A., Yang, W., Heyer, J., Fragale, A., Nicholas, C., Viani, S., Kucherlapati, R., Lipkin, M., Yang, K., & Augenlicht, L. (2002). Colorectal cancer in mice genetically deficient in the mucin Muc2. Science, 295, 1726–1729.

    Article  PubMed  CAS  Google Scholar 

  • Vitale, S., Picascia, S., & Gianfrani, C. (2016). The cross-talk between enterocytes and intraepithelial lymphocytes. Molecular and Cellular Pediatrics, 3, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Moltke, J., Ji, M., Liang, H. E., & Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature, 529, 221–225.

    Article  CAS  Google Scholar 

  • Wehkamp, J., & Stange, E. F. (2006). Paneth cells and the innate immune response. Current Opinion in Gastroenterology, 22, 644–650.

    Article  PubMed  Google Scholar 

  • Wehkamp, J., & Stange, E. F. (2010). Paneth’s disease. Journal of Crohn’s & Colitis, 4, 523–531.

    Article  Google Scholar 

  • Wehkamp, J., Wang, G., Kubler, I., Nuding, S., Gregorieff, A., Schnabel, A., Kays, R. J., Fellermann, K., Burk, O., Schwab, M., et al. (2007). The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. Journal of Immunology, 179, 3109–3118.

    Article  CAS  Google Scholar 

  • Wilson, C. L., Schmidt, A. P., Pirila, E., Valore, E. V., Ferri, N., Sorsa, T., Ganz, T., & Parks, W. C. (2009). Differential processing of {alpha}- and {beta}-defensin precursors by matrix metalloproteinase-7 (MMP-7). The Journal of Biological Chemistry, 284, 8301–8311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wittkopf, N., Neurath, M. F., & Becker, C. (2014). Immune-epithelial crosstalk at the intestinal surface. Journal of Gastroenterology, 49, 375–387.

    Article  PubMed  CAS  Google Scholar 

  • Wittkopf, N., Pickert, G., Billmeier, U., Mahapatro, M., Wirtz, S., Martini, E., Leppkes, M., Neurath, M. F., & Becker, C. (2015). Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection. PLoS One, 10, e0118401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, Y., Valdez, P. A., Danilenko, D. M., Hu, Y., Sa, S. M., Gong, Q., Abbas, A. R., Modrusan, Z., Ghilardi, N., de Sauvage, F. J., & Ouyang, W. (2008). Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine, 14, 282–289.

    Article  PubMed  CAS  Google Scholar 

  • Ziv, E., & Bendayan, M. (2000). Intestinal absorption of peptides through the enterocytes. Microscopy Research and Technique, 49, 346–352.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Günther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Günther, C. (2018). Microbiome and Gut Immunity: The Epithelium. In: Haller, D. (eds) The Gut Microbiome in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90545-7_7

Download citation

Publish with us

Policies and ethics