Skip to main content

Gnotobiology

  • Chapter
  • First Online:
The Gut Microbiome in Health and Disease

Abstract

In this chapter we provide a brief overview on the historical development of gnotobiology, housing, and maintenance systems as well as procedures used today in the gnotobiotic facility/laboratory. The techniques and equipment that prompted the development of the gnotobiology field were developed more than half a century ago. However, the main principles of gnotobiotic work have remained unchanged over the years. The pioneers of gnotobiology were Nuttall and Thierfelder, who have rederived the first germ-free animals. However, groundbreaking advancements in the gnotobiology field were achieved in the mid-1900s by scientists gathered around Reyniers and Trexler at the LOBUND Institute. Since its beginning the main goals of gnotobiotic husbandry were to provide a nucleus of pathogen-free animals for the biomedical research and to elucidate the impact of microorganisms on their host health and physiology. However, to achieve these goals, the obstacles for long-term maintenance of germ-free animals needed to be overcome. The development of gnotobiotic equipment and prerequisites for long-term maintenance accompanied with methodological progress, creation of various mouse models and sequencing platforms, contributed to the rise of gnotobiotic research in the last decade. Today, gnotobiology represents a powerful platform for unraveling the mechanisms underlying the complex nature of host-microbiota interactions and probe the function of individual microbes in health and disease. Germ-free mice can be utilized to unravel the functionality of individual murine or human bacterial species, microbial consortia, or human fecal transplants in health and disease, under highly defined conditions. Thereby, gnotobiology can reveal crucial genetic, microbial, and environmental determinants underlying host-microbiota interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, D. G. (1998). Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clinical Microbiology Reviews, 11, 231–266.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Becker, N., Kunath, J., Loh, G., & Blaut, M. (2011). Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut Microbes, 2, 25–33.

    Article  PubMed  Google Scholar 

  • Becker, C., Neurath, M. F., & Wirtz, S. (2015). The intestinal microbiota in inflammatory bowel disease. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources, 56, 192–204.

    Article  CAS  Google Scholar 

  • Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157, 121–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackmore, D. K., & Casillo, S. (1972). Experimental investigation of uterine infections of mice due to Pasteurella pneumotropica. Journal of Comparative Pathology, 82, 471–475.

    Article  CAS  PubMed  Google Scholar 

  • Bleich, A., & Fox, J. G. (2015). The mammalian microbiome and its importance in laboratory animal research. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources, 56, 153–158.

    Article  CAS  Google Scholar 

  • Bleich, A., & Hansen, A. K. (2012). Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comparative Immunology, Microbiology and Infectious Diseases, 35, 81–92.

    Article  PubMed  Google Scholar 

  • Brenner, D. A., Paik, Y. H., & Schnabl, B. (2015). Role of gut microbiota in liver disease. Journal of Clinical Gastroenterology, 49(Suppl 1), S25–S27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugiroux, S., Beutler, M., Pfann, C., Garzetti, D., Ruscheweyh, H. J., Ring, D., et al. (2016). Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nature Microbiology, 2, 16215.

    Article  CAS  PubMed  Google Scholar 

  • Coates, M. E. (1975). Gnotobiotic animals in research: Their uses and limitations. Laboratory Animals, 9, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • Collins, J., Auchtung, J. M., Schaefer, L., Eaton, K. A., & Britton, R. A. (2015). Humanized microbiota mice as a model of recurrent Clostridium difficile disease. Microbiome, 3, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crouzet, L., Gaultier, E., Del’Homme, C., Cartier, C., Delmas, E., Dapoigny, M., et al. (2013). The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterology and Motility, 25, e272–e282.

    Article  CAS  PubMed  Google Scholar 

  • Dorsch, M. (2012). Cryopreservation of preimplantation embryos and gametes, and associated methods. In H. J. Hedrich (Ed.), The laboratory mouse. Amsterdam: Elsevier.

    Google Scholar 

  • Eun, C. S., Mishima, Y., Wohlgemuth, S., Liu, B., Bower, M., Carroll, I. M., et al. (2014). Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10-/- mice. Infection and Immunity, 82, 2239–2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, H. L. (1959). Housing of disease-free vertebrates. Annals of the New York Academy of Sciences, 78, 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Gates, A. H. (1956). Viability and developmental capacity of eggs from immature mice treated with gonadotrophins. Nature, 177, 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson, B. (1946). Germ-free rearing of rats. Acta Anatomica, 2, 376–391.

    Article  PubMed  Google Scholar 

  • Gustafsson, B. E. (1959). Lightweight stainless steel systems for rearing germfree animals. Annals of the New York Academy of Sciences, 78, 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, C. H., Nielsen, D. S., Kverka, M., Zakostelska, Z., Klimesova, K., Hudcovic, T., et al. (2012). Patterns of early gut colonization shape future immune responses of the host. PLoS One, 7, e34043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, C. H., Metzdorff, S. B., & Hansen, A. K. (2013). Customizing laboratory mice by modifying gut microbiota and host immunity in an early “window of opportunity”. Gut Microbes, 4, 241–245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen, A. K., Hansen, C. H., Krych, L., & Nielsen, D. S. (2014). Impact of the gut microbiota on rodent models of human disease. World Journal of Gastroenterology, 20, 17727–17736.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hecht, G., Bar-Nathan, C., Milite, G., Alon, I., Moshe, Y., Greenfeld, L., et al. (2014). A simple cage-autonomous method for the maintenance of the barrier status of germ-free mice during experimentation. Laboratory Animals, 48, 292–297.

    Article  CAS  PubMed  Google Scholar 

  • Hedrich, H. J., & Nicklas, W. (2012). Housing and maintenance. In H. J. Hedrich (Ed.), The laboratory mouse (pp. 521–546). Academic Press: Oxford.

    Chapter  Google Scholar 

  • Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336, 1268–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hormannsperger, G., Schaubeck, M., & Haller, D. (2015). Intestinal microbiota in animal models of inflammatory diseases. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources, 56, 179–191.

    Article  CAS  Google Scholar 

  • Janus, L. M., Smoczek, A., Hedrich, H. J., & Bleich, A. (2009). Risk assessment of minute virus of mice transmission during rederivation: Detection in reproductive organs, gametes, and embryos of mice after in vivo infection. Biology of Reproduction, 81, 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  • Keubler, L. M., Buettner, M., Hager, C., & Bleich, A. (2015). A multihit model: Colitis lessons from the Interleukin-10-deficient Mouse. Inflammatory Bowel Diseases, 21, 1967–1975.

    Article  PubMed  Google Scholar 

  • Kohashi, O., Kohashi, Y., Takahashi, T., Ozawa, A., & Shigematsu, N. (1985). Reverse effect of gram-positive bacteria vs. gram-negative bacteria on adjuvant-induced arthritis in germfree rats. Microbiology and Immunology, 29, 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Küster, E. (1915). Die keimfreie Zuchtung von Säugetieren. In E. Abderhalden (Ed.) Handbuch der biochemischen Arbeitsmethoden, Berlin, pp. 311–323; 419–436.

    Google Scholar 

  • Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444, 1022–1023.

    Article  CAS  PubMed  Google Scholar 

  • Luckey, T. D. (1963). Germfree life and gnotobiology. New York: Academic Press.

    Google Scholar 

  • Lundberg, R., Toft, M. F., August, B., Hansen, A. K., & Hansen, C. H. (2016). Antibiotic-treated versus germ-free rodents for microbiota transplantation studies. Gut Microbes, 7, 68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macpherson, A. J., McCoy, K. D., Johansen, F. E., & Brandtzaeg, P. (2008). The immune geography of IgA induction and function. Mucosal Immunology, 1, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Mähler, M., Berard, M., Feinstein, R., Gallagher, A., Illgen-Wilcke, B., Pritchett-Corning, K., et al. (2014). FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Laboratory Animals, 48, 178–192.

    Article  CAS  Google Scholar 

  • Nicklas, W., Keubler, L., & Bleich, A. (2015). Maintaining and monitoring the defined microbiota status of gnotobiotic rodents. ILAR Journal, 56, 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Nuttall, G. H. F., & Thierfelder, H. (1897). Tierisches Leben ohne Bakterien im Verdauungskanal. Zeitschrift für Physiologische Chemie, 23, 231–235.

    Article  CAS  Google Scholar 

  • Olszak, T., An, D., Zeissig, S., Vera, M. P., Richter, J., Franke, A., et al. (2012). Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 336, 489–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orcutt, R. P., Gianni, F. J., & Judge, R. J. (1987). Development of an “altered Schaedler flora” for NCI gnotobiotic rodents. Microecology and Therapy, 17, 59.

    Google Scholar 

  • Pleasants, J. R. (1959). Rearing germfree cesarean-born rats, mice, and rabbits through weaning. Annals of the New York Academy of Sciences, 78, 116–126.

    Article  CAS  PubMed  Google Scholar 

  • Rahija, R. J. (2007). Gnotobiotics. In J. G. Fox, M. T. Davidson, C. E. Newcomer, F. W. Quimby, & A. L. Smith (Eds.), The mouse in biomedical research: Normative biology, husbandry, and models (pp. 218–232). Elsevier.

    Google Scholar 

  • Reetz, I. C., Wullenweber-Schmidt, M., Kraft, V., & Hedrich, H. J. (1988). Rederivation of inbred strains of mice by means of embryo transfer. Laboratory Animal Science, 38, 696–701.

    PubMed  CAS  Google Scholar 

  • Reuter, J. D., Livingston, R., & Leblanc, M. (2011). Management strategies for controlling endemic and seasonal mouse parvovirus infection in a barrier facility. Laboratory Animal, 40, 145–152.

    Article  Google Scholar 

  • Reyniers, J. A., & Sacksteder, M. R. (1958). Apparatus and method for shipping germ-free and disease-free animals via public transportation. Applied Microbiology, 6, 146–152.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reyniers, J. A., Trexler, P. C., & Ervin, R. F. (1946). Rearing germ-free albino rats. Lobund Reports, 1–84.

    Google Scholar 

  • Rhee, K. J., Sethupathi, P., Driks, A., Lanning, D. K., & Knight, K. L. (2004). Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. Journal of Immunology, 172, 1118–1124.

    Article  CAS  Google Scholar 

  • Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 1241214.

    Article  CAS  PubMed  Google Scholar 

  • Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews. Immunology, 9, 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillere, R., et al. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359, 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Sartor, R. B. (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134, 577–594.

    Article  CAS  PubMed  Google Scholar 

  • Sarvari, A., Naderi, M. M., Sadeghi, M. R., & Akhondi, M. M. (2013). A technique for facile and precise transfer of mouse embryos. Avicenna Journal of Medical Biotechnology, 5, 62–65.

    PubMed  PubMed Central  Google Scholar 

  • Schaedler, R. W., Dubos, R., & Costello, R. (1965a). The development of the bacterial flora in the gastrointestinal tract of mice. The Journal of Experimental Medicine, 122, 59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaedler, R. W., Dubs, R., & Costello, R. (1965b). Association of germfree mice with bacteria isolated from normal mice. The Journal of Experimental Medicine, 122, 77–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert, A. M., Sinani, H., & Schloss, P. D. (2015). Antibiotic-Induced Alterations of the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against Clostridium difficile. mBio, 6, e00974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu, K., Muranaka, Y., Fujimura, R., Ishida, H., Tazume, S., & Shimamura, T. (1998). Normalization of reproductive function in germfree mice following bacterial contamination. Experimental Animals, 47, 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Steck, N., Hoffmann, M., Sava, I. G., Kim, S. C., Hahne, H., Tonkonogy, S. L., et al. (2011). Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology, 141, 959–971.

    Article  CAS  PubMed  Google Scholar 

  • Trexler, P. C. (1961). The gnotobiote-review and future. Bio-Medical Purview, 1, 47–58.

    PubMed  CAS  Google Scholar 

  • Trexler, P. C. (1983). Gnotobiotics. In H. L. Forster & J. G. Fox (Eds.), The mose in biomedical research (pp. 1–15). New York: Academic Press.

    Google Scholar 

  • Trexler, P. C., & Reynolds, L. I. (1957). Flexible film apparatus for the rearing and use of germfree animals. Applied Microbiology, 5, 406–412.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine, 1, 6ra14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ussar, S., Griffin, N. W., Bezy, O., Fujisaka, S., Vienberg, S., Softic, S., et al. (2015). Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metabolism, 22, 516–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Waaij, D., & Andreas, A. H. (1971). Prevention of airborne contamination and cross-contamination in germ-free mice by laminar flow. The Journal of Hygiene, 69, 83–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vowles, C. J., Anderson, N. E., & Eaton, K. A. (2016). Gnotobiotic mouse technology an illustrated guide. Boca Raton: CRC Press.

    Google Scholar 

  • Weisbroth, S. H., Geistfeld, J., Weisbroth, S. P., Williams, B., Feldman, S. H., Linke, M. J., et al. (1999). Latent Pneumocystis carinii infection in commercial rat colonies: Comparison of inductive immunosuppressants plus histopathology, PCR, and serology as detection methods. Journal of Clinical Microbiology, 37, 1441–1446.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Whittingham, D. G. (1971). Culture of mouse ova. Journal of Reproduction and Fertility. Supplement, 14, 7–21.

    PubMed  CAS  Google Scholar 

  • Wohlgemuth, S., Bower, M., Gulati, A., & Sartor, R. B. (2011). Simplified human microbiota – A humanized gnotobiotic rodent model to study complex microbe-host interactions in ileal Crohn’s disease. Inflammatory Bowel Disease, 17(Suppl 2), S75.

    Article  Google Scholar 

  • Wostmann, B. S. (1981). The germfree animal in nutritional studies. Annual Review of Nutrition, 1, 257–279.

    Article  CAS  PubMed  Google Scholar 

  • Wymore Brand, M., Wannemuehler, M. J., Phillips, G. J., Proctor, A., Overstreet, A. M., Jergens, A. E., et al. (2015). The altered schaedler flora: continued applications of a defined murine microbial community. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources, 56, 169–178.

    Article  CAS  Google Scholar 

  • Zhao, Q., & Elson, C. O. (2018). Adaptive immune education by gut microbiota antigens. Immunology, 154(1), 28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Bleich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basic, M., Bleich, A. (2018). Gnotobiology. In: Haller, D. (eds) The Gut Microbiome in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90545-7_21

Download citation

Publish with us

Policies and ethics