Skip to main content

Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10846))

Included in the following conference series:

Abstract

Let \(\mathrm{\Pi }\) be a family of graphs. In the classical \(\mathrm{\Pi }\)-Vertex Deletion problem, given a graph G and a positive integer k, the objective is to check whether there exists a subset S of at most k vertices such that \(G-S\) is in \(\mathrm{\Pi }\). In this paper, we introduce the conflict free version of this classical problem, namely Conflict Free \(\mathrm{\Pi }\)-Vertex Deletion (CF-\(\mathrm{\Pi }\)-VD), and study these problems from the viewpoint of classical and parameterized complexity. In the CF-\(\mathrm{\Pi }\)-VD problem, given two graphs G and H on the same vertex set and a positive integer k, the objective is to determine whether there exists a set \(S\subseteq V(G)\), of size at most k, such that \(G-S\) is in \(\mathrm{\Pi }\) and H[S] is edgeless. Initiating a systematic study of these problems is one of the main conceptual contribution of this work. We obtain several results on the conflict free version of several classical problems. Our first result shows that if \(\mathrm{\Pi }\) is characterized by a finite family of forbidden induced subgraphs then CF-\(\mathrm{\Pi }\)-VD is Fixed Parameter Tractable (FPT). Furthermore, we obtain improved algorithms for conflict free version of several well studied problems. Next, we show that if \(\mathrm{\Pi }\) is characterized by a “well-behaved” infinite family of forbidden induced subgraphs, then CF-\(\mathrm{\Pi }\)-VD is W[1]-hard. Motivated by this hardness result, we consider the parameterized complexity of CF-\(\mathrm{\Pi }\)-VD when H is restricted to well studied families of graphs. In particular, we show that the conflict free versions of several well-known problems such as Feedback Vertex Set, Odd Cycle Transversal, Chordal Vertex Deletion and Interval Vertex Deletion are FPT when H belongs to the families of d-degenerate graphs and nowhere dense graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \({\mathcal O}^{\star }\) suppresses the polynomial factor in the running time.

References

  1. Agrawal, A., Kolay, S., Lokshtanov, D., Saurabh, S.: A faster FPT algorithm and a smaller kernel for Block Graph Vertex Deletion. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp. 1–13. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49529-2_1

    Chapter  Google Scholar 

  2. Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Choice is hard. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 318–328. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_28

    Chapter  Google Scholar 

  3. Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Conflict-free covering. In: CCCG (2015)

    Google Scholar 

  4. Banik, A., Panolan, F., Raman, V., Sahlot, V.: Fréchet distance between a line and avatar point set. In: FSTTCS, pp. 32:1–32:14 (2016)

    Google Scholar 

  5. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms 11(3), 21:1–21:35 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  9. Darmann, A., Pferschy, U., Schauer, J.: Determining a minimum spanning tree with disjunctive constraints. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS (LNAI), vol. 5783, pp. 414–423. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04428-1_36

    Chapter  Google Scholar 

  10. Darmann, A., Pferschy, U., Schauer, J., Woeginger, G.J.: Paths, trees and matchings under disjunctive constraints. Discret. Appl. Math. 159(16), 1726–1735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Epstein, L., Favrholdt, L.M., Levin, A.: Online variable-sized bin packing with conflicts. Discret. Optim. 8(2), 333–343 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Even, G., Halldórsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online and offline algorithms. J. Sched. 12(2), 199–224 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: approximation, kernelization and optimal FPT algorithms. In: FOCS (2012)

    Google Scholar 

  14. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discret. Appl. Math. 86, 213–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gusfield, D., Pitt, L.: A bounded approximation for the minimum cost 2-sat problem. Algorithmica 8(2), 103–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kann, V.: Polynomially bounded minimization problems which are hard to approximate. In: Lingas, A., Karlsson, R., Carlsson, S. (eds.) ICALP 1993. LNCS, vol. 700, pp. 52–63. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56939-1_61

    Chapter  Google Scholar 

  17. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lokshtanov, D., Panolan, F., Saurabh, S., Sharma, R., Zehavi, M.: Covering small independent sets and separators with applications to parameterized algorithms. CoRR abs/1705.01414 (to appear in SODA 2018)

    Google Scholar 

  20. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41, 960–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Misra, N., Narayanaswamy, N.S., Raman, V., Shankar, B.S.: Solving min ones 2-sat as fast as vertex cover. Theor. Comput. Sci. 506, 115–121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pferschy, U., Schauer, J.: The maximum flow problem with conflict and forcing conditions. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 289–294. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21527-8_34

    Chapter  Google Scholar 

  25. Pferschy, U., Schauer, J.: The maximum flow problem with disjunctive constraints. J. Comb. Optim. 26(1), 109–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pferschy, U., Schauer, J.: Approximation of knapsack problems with conflict and forcing graphs. J. Comb. Optim. 33(4), 1300–1323 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf. Comput. 255, 126–146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC, pp. 253–264. ACM, New York (1978)

    Google Scholar 

Download references

Acknowledgement

The first author acknowledges DST, India for SERB-NPDF fellowship [PDF/2016/003508].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, P., Kanesh, L., Misra, P. (2018). Conflict Free Version of Covering Problems on Graphs: Classical and Parameterized. In: Fomin, F., Podolskii, V. (eds) Computer Science – Theory and Applications. CSR 2018. Lecture Notes in Computer Science(), vol 10846. Springer, Cham. https://doi.org/10.1007/978-3-319-90530-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90530-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90529-7

  • Online ISBN: 978-3-319-90530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics