Skip to main content

Pathological Processes

  • Chapter
  • First Online:
Reflux Aspiration and Lung Disease

Abstract

A key factor in many lung diseases and in lung allograft deterioration is an inflammatory response leading to fibroproliferation. What is the evidence for gastroduodenal reflux and aspiration being a driver of these processes? The potential damaging agents in aspirated refluxate are food particles, and microbes (particularly when patients are treated with proton pump inhibitors (PPI) and microbial overgrowth of the stomach occurs). In addition gastric juice contains enzymes e.g. pepsin and lipase and gastric acid which all have the potential to damage airway mucosa [1]. If duodenal reflux into the stomach has occurred then the gastric juice will contain conjugated bile acids, bilirubin, phospholipids and digestive enzymes in particular trypsin, chymotrypsin and lipases. These pancreatic enzymes could survive in the stomach retaining activity if the pH has been elevated by the alkaline refluxate coming from the duodenum, or in patients on PPI treatment. For example trypsin retains functionality when exposed to pepsin at pH 4.0 for 6 h but was denatured by incubation with pepsin at pH 2.2 for 4 h [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brownlee IA, et al. From gastric aspiration to airway inflammation. Monaldi Arch Chest Dis. 2010;73:54–63.

    PubMed  CAS  Google Scholar 

  2. Pearson JP, Parikh S. Nature and properties of gastro-oesophageal and extra- oesophagel refluxate. Aliment Pharmacol Ther. 2011;33(suppl 1):1–7.

    PubMed  Google Scholar 

  3. Que K, et al. Histological examination of the relationship between respiratory disorders and repetitive microaspiration using a rat gastro-duodenal contents reflux model. Exp Anim. 2011;60(2):141–50.

    Article  Google Scholar 

  4. Harding SM. Gastroesophageal reflux: a potential asthma trigger. Immunol Allergy Clin North Am. 2005;25:131–48.

    Article  PubMed  Google Scholar 

  5. Aikawa T, et al. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest. 1992;101:916–21.

    Article  CAS  PubMed  Google Scholar 

  6. Tang T, et al. Aspiration of gastric fluid in pulmonary allografts: effects of pH. J Surg Res. 2013;181:E31–8.

    Article  PubMed  Google Scholar 

  7. Li B, et al. Chronic aspiration of gastric fluid induces the development of obliterative bronchiolitis in rat lung transplants. Am J Transplant. 2008;8:1614–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hartwig MG, et al. Chronic aspiration of gastric fluid accelerates pulmonary dysfunction in a rat model of lung transplantation. J Thorac Cardiovasc Surg. 2006;131:209–17.

    Article  PubMed  Google Scholar 

  9. Cheng CM, et al. Macrophage activation by gastric fluid suggests MMP involvement in aspiration-induced lung disease. Immunobiology. 2010;215:173–81.

    Article  CAS  PubMed  Google Scholar 

  10. Cho NH, et al. Induction of the gene encoding macrophage chemoattractant protein 1 by orientia tsutsugamushi in human endothelial cells involves activation of transcription factor activator protein 1. Infect Immun. 2002;70:4841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen D, et al. Protease activated receptor 1 activation is necessary for monocyte chemoattractant protein 1 dependent leucocyte recruitment in vivo. J Exp Med. 2008;205:1739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu HY, et al. Study of gastric fluid induced cytokine and chemokine expression in airway smooth muscle cells and airway remodelling. Cytokine. 2011;56:726–31.

    Article  CAS  PubMed  Google Scholar 

  13. Doherty T, Broide D. Cytokines and growth factors in airway remodelling in asthma. Curr Opin Immunol. 2007;19:676–80.

    Article  CAS  PubMed  Google Scholar 

  14. Barbas AS, et al. Chronic aspiration shifts the immune response from Th1 to Th2 in a murine model of asthma. Eur J Clin Invest. 2008;38:596–602.

    Article  CAS  PubMed  Google Scholar 

  15. Imai T, et al. Identification and molecular characterisation of fractalkine receptor CX3CR1 which mediates both leucocyte migration and adhesion. Cell. 1997;91:521–30.

    Article  CAS  PubMed  Google Scholar 

  16. Murphy DM, O’Byrne PM. Recent advances in the pathophysiology of asthma. Chest. 2010;137:1417–26.

    Article  CAS  PubMed  Google Scholar 

  17. Lan H, et al. The PTEN tumor suppressor inhibits human airway smooth muscle cell migration. Int J Mol Med. 2010;26:893–9.

    PubMed  CAS  Google Scholar 

  18. Bathoorn E, et al. Cytotoxicity and induction of inflammation by pepsin and acid in bronchial epithelial cells. Int J Inflamm. 2011;2011:569416. https://doi.org/10.4061/2011/569416.

    Article  CAS  Google Scholar 

  19. Bulmer DM, et al. Laryngeal mucosa: its susceptibility to damage by acid and pepsin. Laryngoscope. 2010;120:777–82.

    Article  PubMed  Google Scholar 

  20. Su KC, et al. Bile acids increase alveolar epithelial permeability via mitogen-activated protein kinase, cytosolic phospholipase A2, cyclooxygenase-2, prostaglandin E2 and junctional proteins. Respirology. 2013;18:848–56.

    Article  PubMed  Google Scholar 

  21. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–49.

    Article  CAS  PubMed  Google Scholar 

  22. Matthay MA, et al. Lung epithelium fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82:569–600.

    Article  CAS  PubMed  Google Scholar 

  23. Perng DW, et al. Exposure of airway epithelium to bile acids associated with gastroesophageal reflux symptoms. Chest. 2007;132:1548–56.

    Article  CAS  PubMed  Google Scholar 

  24. Peyssonnaux C, et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 2005;115:1806–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cramer T, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112:645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9:609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Legendre C, et al. Bile acids repress hypoxia-inducible factor 1 and modulate the airway immune response. Infect Immun. 2014;82:3531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reen FJ, et al. Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One. 2012;7:e45978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brodlie M, et al. Bile acid aspiration in people with cystic fibrosis before and after lung transplantation. Eur Respir J. 2015;46(6):1820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goss CH, Burns JJ. Exacerbations in cystic fibrosis. 1: Epidemiology and pathogenesis. Thorax. 2007;62:360–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Raghu G, et al. High prevalence of abnormal acid gastro-oesophageal reflux in idiopathic pulmonary fibrosis. Eur Respir J. 2006;27:136–42.

    Article  CAS  PubMed  Google Scholar 

  33. Salvioli B, et al. Gastro-oesophageal reflux and interstitial lung disease. Dig Liver Dis. 2006;38:879–84.

    Article  CAS  PubMed  Google Scholar 

  34. Sweet MP, et al. Gastro-oesophageal reflux in patients with idiopathic pulmonary fibrosis referred for lung transplantation. J Thorac Cardiovasc Surg. 2007;133:1078–84.

    Article  PubMed  Google Scholar 

  35. Lee JS, et al. Gastroesophageal reflux therapy is associated with longer survival in patients with idiopathic pulmonary fibrosis. Am J Crit Care Med. 2011;184:1390–4.

    Article  Google Scholar 

  36. Rosen R, et al. The presence of pepsin in the lung and its relationship to pathologic gastro-esophageal reflux. Neurogastroenterol Motil. 2012;24:129–e85.

    Article  CAS  PubMed  Google Scholar 

  37. Ali MS, et al. Bile acids in Laryngopharyngeal refluxate: will they enhance or attenuate the action of pepsin? Laryngoscope. 2012;123:434–9.

    Article  CAS  PubMed  Google Scholar 

  38. Parsons JP, Mastronarde JG. Gastroesophageal reflux disease and asthma. Curr Opin Pulm Med. 2010;16:60–3.

    Article  PubMed  Google Scholar 

  39. Ravelli AM, Panarotto MB, Verdoni L, et al. Pulmonary aspiration shown by scintigraphy in gastroesophageal reflux-related respiratory disease. Chest. 2006;130:1520–6.

    Article  PubMed  Google Scholar 

  40. Araujo AC, Aprile LR, Dantas RO, et al. Bronchial responsiveness during esophageal acid infusion. Lung. 2008;186:123–8.

    Article  PubMed  Google Scholar 

  41. Bonacin D, Fabijanic D, Rasic M, et al. Gastroesophageal reflux disease and pulmonary function: a potential role of dead space extension. Med Sci Monit. 2012;18:CR271–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. D’Ovidio F, Mura M, Ridsdale R, et al. The effect of reflux and bile acid aspiration on the lung allograft and its surfactant and innate immunity molecules SP-A and SP-D. Am J Transpl. 2006;6:1930–8.

    Article  CAS  Google Scholar 

  43. Blondeau K, Mertens V, Vanaudenaerde BA, et al. Gastro-oesophageal reflux and gastric aspiration in lung transplant patients with or without chronic rejection. Eur Respir J. 2008;31:707–13.

    Article  CAS  PubMed  Google Scholar 

  44. Birk DE. Type V collagen: heterotypic type I/V collagen interactions in regulation of fibril assembly. Micron. 2001;32:223–37.

    Article  CAS  PubMed  Google Scholar 

  45. Burlingham WJ, Love RB, Jankowska-Gan E, et al. Il-17-depenent cellular immunity to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117:3498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoshida S, haque A, Mizobuchi T, et al. Anti-type V collagen lymphocytes that express Il-17 and IL-23 induce rejection pathology in fresh and well healed lung transplants. Am J Transplant. 2006;6:724–35.

    Article  CAS  PubMed  Google Scholar 

  47. Bobadilla JL, Jankowska-Gan E, Quingyong X, et al. Reflux-induced collagen type V sensitization. Chest. 2010;138:363–70.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Davis SD, Shankaran V, Kovacs EJ, et al. Gastroesophageal disease after transplantation: Pathophysiology and implications for treatment. Surgery. 2010;148:737–45.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cantu E, Appel JZ, Hartwig MG, et al. Early fundoplication prevents chronic allograft dysfunction in patients with gastroesophageal reflux disease. Ann Thorac Surg. 2004;78:1142–51.

    Article  PubMed  Google Scholar 

  50. Robertson AGN, Shenfine J, Ward C, et al. A call for standardization of anti-reflux surgery in the lung transplant population. Transplantation. 2009;87:1112–4.

    Article  PubMed  Google Scholar 

  51. Robertson AGN, Ward C, Pearson JP, et al. Lung transplantation, gastroesophageal reflux, and fundoplication. Ann Thorac Surg. 2010;89:653–60.

    Article  PubMed  Google Scholar 

  52. Fisichella PM, Davis CS, Lowery E, et al. Pulmonary immune changes early after laparoscopic antireflux surgery in lung transplant patients with gastroesophageal reflux disease. J Surg Res. 2012;177:E65–73.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Neujahr DC, Mohammed A, Ulukpo O, et al. Surgical correction of gastroesophageal reflux in lung transplant patients is associated with decreased effector CD8 cells in lung lavages: a case series. Chest. 2010;138:937–43.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. Pearson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pearson, J.P., Aldhahrani, A., Chater, P.I., Wilcox, M.D. (2018). Pathological Processes. In: Morice, A., Dettmar, P. (eds) Reflux Aspiration and Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90525-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90525-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90523-5

  • Online ISBN: 978-3-319-90525-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics