Skip to main content

Chemical Composition of Refluxate

  • Chapter
  • First Online:
Reflux Aspiration and Lung Disease
  • 574 Accesses

Abstract

The reflux of gastric contents into the aerodigestive tract has been linked to a variety of oesophageal, oral, airways and respiratory diseases. The composition of refluxate is not merely secreted gastric juice and instead represents a complex mixture of gastrointestinal secretions and exogenous factors. Within the stomach, gastric juice mixes with proximal (saliva) and distal (pancreatic juice, bile) gastrointestinal secretions. New microbes enter the stomach via ingested food, saliva and other aerodigestive secretions and join the gastric microbial community. Ingestion of food may itself drive a number of physiological actions that are linked to the occurrence of reflux.

Digestive enzymes, acid and bile may cause direct damage to the unprotected mucosal tissues of the aerodigestive tract. Further from this, the processes of digestion within the stomach may release new antigen that have the potential to cause an immunological response. The gastric microbiome is largely similar to that of the aerodigestive tract, so its role in damage as a result of reflux is unclear. The complex interplay between all of the above factors is not currently well understood, although is likely to play a role both in the damaging potential of refluxate as well as the frequency and volume of reflux events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shafik A, El Sibai O, Shafik AA, Shafik IA. Mechanism of gastric emptying through the pyloric sphincter: a human study. Med Sci Monit. 2007;13(1):CR24–CR9.

    PubMed  Google Scholar 

  2. Kidd M, Hauso Ø, Drozdov I, Gustafsson BI, Modlin IM. Delineation of the chemomechanosensory regulation of gastrin secretion using pure rodent G cells. Gastroenterology. 2009;137(1):231–41.e10.

    Article  CAS  PubMed  Google Scholar 

  3. Lee CS, Perreault N, Brestelli JE, Kaestner KH. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev. 2002;16(12):1488–97. https://doi.org/10.1101/gad.985002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Allen A, Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol. 2005;288(1):C1–C19.

    Article  CAS  PubMed  Google Scholar 

  5. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36. https://doi.org/10.1016/j.stem.2009.11.013.

    Article  PubMed  CAS  Google Scholar 

  6. Mills JC, Shivdasani RA. Gastric epithelial stem cells. Gastroenterology. 2011;140(2):412–24. https://doi.org/10.1053/j.gastro.2010.12.001.

    Article  PubMed  CAS  Google Scholar 

  7. Barker N, Van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell. 2012;11(4):452–60. https://doi.org/10.1016/j.stem.2012.09.009.

    Article  PubMed  CAS  Google Scholar 

  8. Pearson JP, Parikh S, Robertson AGN, Stovold R, Brownlee IA. Pepsins. In: Johnston N, Toohill RJ, editors. Effects, diagnosis and management of extra-esophageal reflux. New York: Nova Science Publishers; 2012. p. 29–41.

    Google Scholar 

  9. Howell MD, Novack V, Grgurich P, Soulliard D, Novack L, Pencina M, et al. Iatrogenic gastric acid suppression and the risk of nosocomial Clostridium difficile infection. Arch Intern Med. 2010;170(9):784–90.

    Article  PubMed  Google Scholar 

  10. Lombardo L, Foti M, Ruggia O, Chiecchio A. Increased incidence of small intestinal bacterial overgrowth during proton pump inhibitor therapy. Clin Gastroenterol Hepatol. 2010;8(6):504–8.

    Article  PubMed  Google Scholar 

  11. Van Pinxteren B, Numans ME, Lau J, De Wit NJ, Hungin APS, Bonis PAL. Short-term treatment of gastroesophageal reflux disease: a systematic review and meta-analysis of the effect of acid-suppressant drugs in empirical treatment and in endoscopy-negative patients. J Gen Intern Med. 2003;18(9):755–63. https://doi.org/10.1046/j.1525-1497.2003.20833.x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ali T, Roberts DN, Tierney WM. Long-term safety concerns with proton pump inhibitors. Am J Med. 2009;122(10):896–903. https://doi.org/10.1016/j.amjmed.2009.04.014.

    Article  PubMed  CAS  Google Scholar 

  13. Koufman JA. The otolaryngologic manifestations of gastroesophageal reflux disease (Gerd): a clinical investigation of 225 patients using ambulatory 24-hour pH monitoring and an experimental investigation of the role of acid and pepsin in the development of laryngeal injury. Laryngoscope. 1991;101(4):1–78.

    Article  CAS  PubMed  Google Scholar 

  14. Bulmer DM, Ali MS, Brownlee IA, Dettmar PW, Pearson JP. Laryngeal mucosa: its susceptibility to damage by acid and pepsin. Laryngoscope. 2010;120(4):777–82. https://doi.org/10.1002/lary.20665.

    Article  PubMed  Google Scholar 

  15. Johnston N, Dettmar PW, Bishwokarma B, Lively MO, Koufman JA. Activity/stability of human pepsin: implications for reflux attributed laryngeal disease. Laryngoscope. 2007;117(6):1036–9. https://doi.org/10.1097/MLG.0b013e31804154c3.

    Article  PubMed  Google Scholar 

  16. Johnston N, Yan JC, Hoekzema CR, Samuels TL, Stoner GD, Blumin JH, et al. Pepsin promotes proliferation of laryngeal and pharyngeal epithelial cells. Laryngoscope. 2012;122(6):1317–25.

    Article  CAS  PubMed  Google Scholar 

  17. Kelly EA, Samuels TL, Johnston N. Chronic pepsin exposure promotes anchorage-independent growth and migration of a hypopharyngeal squamous cell line. Otolaryngol Head Neck Surg. 2014;150(4):618–24. https://doi.org/10.1177/0194599813517862.

    Article  PubMed  Google Scholar 

  18. Harada S, Tanaka S, Takahashi Y, Matsumura H, Shimamoto C, Nakano T, et al. Inhibition of Ca2+-regulated exocytosis by levetiracetam, a ligand for SV2A, in antral mucous cells of guinea pigs. Eur J Pharmacol. 2013;721(1–3):185–92.

    Article  CAS  PubMed  Google Scholar 

  19. Phillipson M, Johansson MEV, Henriksnäs J, Petersson J, Gendler SJ, Sandler S, et al. The gastric mucus layers: constituents and regulation of accumulation. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G806–G12.

    Article  CAS  PubMed  Google Scholar 

  20. Younan F, Pearson J, Allen A, Venables C. Changes in the structure of the mucous gel on the mucosal surface of the stomach in association with peptic ulcer disease. Gastroenterology. 1982;82(5 Pt 1):827–31.

    PubMed  CAS  Google Scholar 

  21. Goudra BG, Singh PM, Carlin A, Manjunath AK, Reihmer J, Gouda GB, et al. Effect of gum chewing on the volume and pH of gastric contents: a prospective randomized study. Dig Dis Sci. 2015;60(4):979–83. https://doi.org/10.1007/s10620-014-3404-z.

    Article  PubMed  CAS  Google Scholar 

  22. Hirschowitz BI. Gastric acid and pepsin secretion in patients with Barrett’s esophagus and appropriate controls. Dig Dis Sci. 1996;41(7):1384–91. https://doi.org/10.1007/BF02088563.

    Article  PubMed  CAS  Google Scholar 

  23. Janssen P, Vanden Berghe P, Verschueren S, Lehmann A, Depoortere I, Tack J. Review article: the role of gastric motility in the control of food intake. Aliment Pharmacol Ther. 2011;33(8):880–94.

    Article  CAS  PubMed  Google Scholar 

  24. Beaumont H, Bennink RJ, De Jong J, Boeckxstaens GE. The position of the acid pocket as a major risk factor for acidic reflux in healthy subjects and patients with GORD. Gut. 2010;59(4):441–51. https://doi.org/10.1136/gut.2009.178061.

    Article  PubMed  Google Scholar 

  25. Brownlee IA. The impact of dietary fibre intake on the physiology and health of the stomach and upper gastrointestinal tract. Bioact Carbohydr Diet Fibre. 2014;4(2):155–69. https://doi.org/10.1016/j.bcdf.2014.09.005.

    Article  CAS  Google Scholar 

  26. Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology. 2008;134(7):1842–60.

    Article  CAS  PubMed  Google Scholar 

  27. Isackson H, Ashley CC. Secretory functions of the gastrointestinal tract. Surgery (United Kingdom). 2014;32(8):396–403.

    Google Scholar 

  28. Brownlee IA. The physiological roles of dietary fibre. Food Hydrocoll. 2011;25(2):238–50.

    Article  CAS  Google Scholar 

  29. Saqui-Salces M, Dowdle WE, Reiter JF, Merchant JL. A high-fat diet regulates gastrin and acid secretion through primary cilia. FASEB J. 2012;26(8):3127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J Gastroenterol. 2013;48(4):442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fiorucci S, Distrutti E, Federici B, Palazzetti B, Baldoni M, Morelli A, et al. PAR-2 modulates pepsinogen secretion from gastric-isolated chief cells. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G611–G20.

    Article  CAS  PubMed  Google Scholar 

  32. Lopetuso LR, Scaldaferri F, Franceschi F, Gasbarrini A. The gastrointestinal microbiome - functional interference between stomach and intestine. Best Pract Res Clin Gastroenterol. 2014;28(6):995–1002. https://doi.org/10.1016/j.bpg.2014.10.004.

    Article  PubMed  CAS  Google Scholar 

  33. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015;6(2):e00037-15. https://doi.org/10.1128/mBio.00037-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang ZK, Yang YS. Upper gastrointestinal microbiota and digestive diseases. World J Gastroenterol. 2013;19(10):1541–50. https://doi.org/10.3748/wjg.v19.i10.1541.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deng B, Li Y, Zhang Y, Bai L, Yang P. Helicobacter pylori infection and lung cancer: a review of an emerging hypothesis. Carcinogenesis. 2013;34(6):1189–95. https://doi.org/10.1093/carcin/bgt114.

    Article  PubMed  CAS  Google Scholar 

  36. Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis. 2015;47(12):1007–12. https://doi.org/10.1016/j.dld.2015.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gong YB, Zheng JL, Jin B, Zhuo DX, Huang ZQ, Qi H, et al. Particular Candida albicans strains in the digestive tract of dyspeptic patients, identified by multilocus sequence typing. PLoS One. 2012;7(4):e35311. https://doi.org/10.1371/journal.pone.0035311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67. https://doi.org/10.1038/nrd2466.

    Article  PubMed  CAS  Google Scholar 

  39. Kessing BF, Conchillo JM, Bredenoord AJ, Smout AJPM, Masclee AAM. Review article: the clinical relevance of transient lower oesophageal sphincter relaxations in gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2011;33(6):650–61. https://doi.org/10.1111/j.1365-2036.2010.04565.x.

    Article  PubMed  CAS  Google Scholar 

  40. Seenan JP, Wirz AA, Robertson EV, Clarke AT, Manning JJ, Kelman AW, et al. Effect of nitrite delivered in saliva on postprandial gastro-esophageal function. Scand J Gastroenterol. 2012;47(4):387–96. https://doi.org/10.3109/00365521.2012.658854.

    Article  PubMed  CAS  Google Scholar 

  41. Piche T, Zerbib F, Bruley Des Varannes S, Cherbut C, Anini Y, Roze C, et al. Modulation by colonic fermentation of LES function in humans. Am J Physiol Gastrointest Liver Physiol. 2000;278(4):G578–G84.

    Article  CAS  PubMed  Google Scholar 

  42. Fuchs KH, Maroske J, Fein M, Tigges H, Ritter MP, Heimbucher J, et al. Variability in the composition of physiologic duodenogastric reflux. J Gastrointest Surg. 1999;3(4):389–96.

    Article  CAS  PubMed  Google Scholar 

  43. D’Ovidio F, Mura M, Ridsdale R, Takahashi H, Waddell TK, Hutcheon M, et al. The effect of reflux and bile acid aspiration on the lung allograft and its surfactant and innate immunity molecules SP-A and SP-D. Am J Transplant. 2006;6(8):1930–8. https://doi.org/10.1111/j.1600-6143.2006.01357.x.

    Article  PubMed  CAS  Google Scholar 

  44. Koufman JA. Low-acid diet for recalcitrant laryngopharyngeal reflux: therapeutic benefits and their implications. Ann Otol Rhinol Laryngol. 2011;120(5):281–7.

    Article  PubMed  Google Scholar 

  45. Singh M, Lee J, Gupta N, Gaddam S, Smith BK, Wani SB, et al. Weight loss can lead to resolution of gastroesophageal reflux disease symptoms: a prospective intervention trial. Obesity. 2013;21(2):284–90. https://doi.org/10.1038/oby.2012.180.

    Article  PubMed  Google Scholar 

  46. Smith JE, Morjaria JB, Morice AH. Dietary intervention in the treatment of patients with cough and symptoms suggestive of airways reflux as determined by hull airways reflux questionnaire. Cough. 2013;9(1):27. https://doi.org/10.1186/1745-9974-9-27.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kaltenbach T, Crockett S, Gerson LB. Are lifestyle measures effective in patients with gastroesophageal reflux disease? An evidence-based approach. Arch Intern Med. 2006;166(9):965–71.

    Article  PubMed  Google Scholar 

  48. Kubo A, Block G, Quesenberry CP, Buffler P, Corley DA. Dietary guideline adherence for gastroesophageal reflux disease. BMC Gastroenterol. 2014;14(1):144. https://doi.org/10.1186/1471-230X-14-144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kristal AR, Blount PL, Schenk JM, Sanchez CA, Rabinovitch PS, Odze RD, et al. Low-fat, high fruit and vegetable diets and weight loss do not affect biomarkers of cellular proliferation in Barrett esophagus. Cancer Epidemiol Biomarkers Prev. 2005;14(10):2377–83. https://doi.org/10.1158/1055-9965.EPI-05-0158.

    Article  PubMed  CAS  Google Scholar 

  50. Corvaglia L, Aceti A, Mariani E, Legnani E, Ferlini M, Raffaeli G, et al. Lack of efficacy of a starch-thickened preterm formula on gastro-oesophageal reflux in preterm infants: a pilot study. J Matern Fetal Neonatal Med. 2012;25(12):2735–8. https://doi.org/10.3109/14767058.2012.704440.

    Article  PubMed  CAS  Google Scholar 

  51. Xinias I, Mouane N, Le Luyer B, Spiroglou K, Demertzidou V, Hauser B, et al. Cornstarch thickened formula reduces oesophageal acid exposure time in infants. Dig Liver Dis. 2005;37(1):23–7. https://doi.org/10.1016/j.dld.2004.07.015.

    Article  PubMed  CAS  Google Scholar 

  52. Delgado-Aros S, Camilleri M, Cremonini F, Ferber I, Stephens D, Burton DD. Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. Gastroenterology. 2004;127(6):1685–94. https://doi.org/10.1053/j.gastro.2004.09.006.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain A. Brownlee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brownlee, I.A. (2018). Chemical Composition of Refluxate. In: Morice, A., Dettmar, P. (eds) Reflux Aspiration and Lung Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-90525-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90525-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90523-5

  • Online ISBN: 978-3-319-90525-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics