Skip to main content

Field Effect and Applications

  • Chapter
  • First Online:
Nanoscale Electrochemistry of Molecular Contacts

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 488 Accesses

Abstract

Chapter 1 discussed the importance of establishing a unified standpoint for electronics and electrochemistry, and also showed that this can be done by suitably defining chemical or electrochemical capacitances. In Chap. 2, a detailed description was given about how chemical or electrochemical capacitances (if an electrolyte is considered in the analysis) can be derived using the first principles of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2000)

    Google Scholar 

  2. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011)

    Article  CAS  Google Scholar 

  3. G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. D.A. Miranda, P.R. Bueno, Density functional theory and an experimentally-designed energy functional of electron density. Phys. Chem. Chem. Phys. 18(37), 25984–25992 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. A. Santos, J.P. Piccoli, N.A. Santos, E.M. Cilli, P.R. Bueno, Redox-tagged peptide for capacitive diagnostic assays. Biosens. Bioelectron. 68, 281–287 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. P.R. Bueno, G.T. Feliciano, J.J. Davis, Capacitance spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 9375–9382 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. M.S. Gudiksen, L. J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415(6872), 617–620 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. K. Ariga, J.P. Hill, Q.M. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9(19), 2319–2340 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. J.N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A.Z Elorza, N. Camara, F.J.G. de Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405), 77–81 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. Z.H. Chen, Y.M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E-Low-dimensional systems and nanostructures, 40(2), 228–232 (2007)

    Article  CAS  Google Scholar 

  12. D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, Electrochemical biosensors-sensor principles and architectures. Sensors, 8(3), 1400–1458 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. H.I. Hanafi, S. Tiwari, I. Khan, Fast and long retention-time nano-crystal memory. IEEE Trans. Electron Devices 43(9), 1553–1558 (1996)

    Article  CAS  Google Scholar 

  14. M.C. McAlpine, H. Ahmad, D.W. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater Sci. 56(8), 1178–1271 (2011)

    Article  CAS  Google Scholar 

  16. Z.L. Wang, Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452–468 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. C. Bartic, G. Borghs, Organic thin-film transistors as transducers for (bio) analytical applications. Anal. Bioanal. Chem. 384(2), 354–365 (2006)

    Article  CAS  Google Scholar 

  19. J. Vanderspiegel, I. Lauks, P. Chan, D. Babic, The extended gate chemically sensitive field-effect transistor as multi-species microprobe. Sens. Actuators 4(2), 291–298 (1983)

    Google Scholar 

  20. Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett. 9(9), 3318–3322 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P.L. McEuen, High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2(8), 869–872 (2002)

    Article  CAS  Google Scholar 

  22. M. Berggren, A. Richter-Dahlfors, Organic bioelectronics. Adv. Mater. 19(20), 3201–3213 (2007)

    Article  CAS  Google Scholar 

  23. C.R. Bondy, S.J. Loeb, Amide based receptors for anions. Coord. Chem. Rev. 240 (1–2), 77–99 (2003)

    Article  CAS  Google Scholar 

  24. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Electroluminescence in conjugated polymers. Nature 397 (6715), 121-128 (1999)

    Article  CAS  Google Scholar 

  25. M.; Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. U. Lange, N.V. Roznyatouskaya, V.M. Mirsky, Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614(1), 1–26 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012)

    Article  PubMed  CAS  Google Scholar 

  28. J.T. Mabeck, G.G. Malliaras, Chemical and biological sensors based on organic thin-film transistors. Anal. Bioanal. Chem. 384(2), 343–353 (2006)

    Article  PubMed  CAS  Google Scholar 

  29. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W.M. Zhang, M.L. Chabinyc, R.J. Kline, M.D. McGehee, M.F. Toney, Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5(4), 328–333

    Article  CAS  PubMed  Google Scholar 

  30. J. Piccoli, R. Hein, A.H. El-Sagheer, T. Brown, E.M. Cilli, P.R. Bueno, J.J. Davis, Redox capacitive assaying of c-reactive protein at a peptide supported aptamer interface. Anal. Chem. 90(5), 3005–3008 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. P.R. Bueno, T.A. Benites, J.J. Davis. The mesoscopic electrochemistry of molecular junctions. Sci. Rep. 6, 18400 (2016)

    Google Scholar 

  32. P.R. Bueno, F.C.B. Fernandes, J.J. Davis, Quantum capacitance as a reagentless molecular sensing element. Nanoscale (2017)

    Google Scholar 

  33. S. Luryi, Quantum capacitance devices. Appl. Phys. Lett. 52, 501 (1988)

    Article  Google Scholar 

  34. W.T. Yang, R.G. Parr, Hardness, softness and the fukui function in the electronic theory of metals and catalysis, in Proceedings of the National Academy of Sciences of the United States of America, 82 (20), 6723–6726 (1985)

    Article  CAS  Google Scholar 

  35. E. Laviron, AC polarograpy and faradaic impedance of strongly adsorbed electroactive species. 2. Theoretical-study of a quasi-reversible reaction in the case of Framkin isotherm. J. Electroanal. Chem. 105(1), 25–34 (1979)

    Google Scholar 

  36. E. Laviron, AC polarography and faradaic impedance of strongly adsorbed electroactive species. 1. Theoretical and experimental-study of quasi-reversible reaction in the case of Langmuir isotherm. J. Electroanal. Chem. 97(2), 135–149 (1979)

    Google Scholar 

  37. A.L. Eckermann, D.J. Feld, J.A. Shaw, T.J. Meade, Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254(15–16), 1769–1802 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. P.R. Bueno, J.J. Davis, G. Mizzon, Capacitance spectroscopy: A versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers. J. Phys. Chem. C. 116(30), 8822–8829 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. P.R. Bueno, D.A. Miranda, Conceptual density functional theory for electron transfer and transport in mesoscopic systems. Phys. Chem. Chem. Phys. 19(8), 6184–6195 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. S.K. Dey, Y.T. Long, S. Chowdhury, T.C. Sutherland, H.S. Mandal, H.B. Kraatz, Study of electron transfer in ferrocene-labeled collagen-like peptides. Langmuir 23(12), 6475 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. H.S. Mandal, H.B. Kraatz, Electron transfer mechanism in helical peptides. J. Phys. Chem. A Lett. 3(6), 709–713 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. A. Shah, B. Adhikari, S. Martic, A. Munir, S. Shahzad, K. Ahmad, H.B. Kraatz, Electron transfer in peptides. Chem. Soc. Rev. 44 (4), 1015–1027 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. X.Y. Xiao, B.Q. Xu, N.J. Tao, Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 126(17), 5370–5371 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. X.L. Li, J. He, J. Hihath, B.Q. Xu, S.M. Lindsay, N.J. Tao, Conductance of single alkanedithiols: conduction mechanism and effect of molecule-electrode contacts. J. Am. Chem. Soc. 128(6), 2135–2141 (2006)

    Article  CAS  PubMed  Google Scholar 

  45. W.Y. Wang, T. Lee, M.A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(3), (2003)

    Google Scholar 

  46. P. Senet, Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness. J. Chem. Phys. 107(7), 2516–2524 (1997)

    Article  CAS  Google Scholar 

  47. F.C.B. Fernandes, A. Santos, D.C. Martins, M.S. Goes, P.R. Bueno, Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosens. Bioelectron. 57, 96–102 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. F.C.B. Fernandes, M.S. Góes, J.J. Davis, P.R. Bueno, Label free redox capacitive biosensing. Biosens. Bioelectron. 50, 437–440 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. F.C.B. Fernandes, A.V. Patil, P.R. Bueno, J.J. Davis, Optimized diagnostic assays based on redox tagged bioreceptive interfaces. Anal. Chem. 87(24), 12137–12144 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. A.V. Patil, F.C.B. Fernandes, P.R. Bueno, J.J. Davis, lmmittance electroanalysis in diagnostics. Anal. Chem. 87(2), 944–950 (2015)

    Google Scholar 

  51. J. Piccoli, A. Santos, N.A. Santos, P.R. Bueno, E.M. Cilli, Peptide in capacitance electroanalysis for diagnostics. J. Pept. Sci. 22, S24–S24 (2016)

    Google Scholar 

  52. J.P. Piccoli, A. Santos, N.A. Santos, E.N. Lorenzon, E.M. Cilli, P.R. Bueno, The self-assembly of redox active peptides: synthesis and electrochemical capacitive behavior. Biopolymers 106(3), 357–367 (2016)

    Article  CAS  PubMed  Google Scholar 

  53. J.P. Piccoli, N.A. Santos, E.N. Lorenzon, A. Santos, F.C.B. Fernandes, P.R. Bueno, E.M.Cilli, Ferrocene-peptides: a new approach for self-assembled monolayers. J. Pept. Sci. 20, S204–S205 (2014)

    Google Scholar 

  54. S. Fletcher, A non-Marcus model for electrostatic fluctuations in long range electron transfer. J. Solid State Electrochem. 11(7), 965–969 (2007)

    Article  CAS  Google Scholar 

  55. S. Fletcher, The theory of electron transfer. J. Solid State Electrochem. 14(5), 705–739 (2010)

    Article  CAS  Google Scholar 

  56. R.A. Marcus, N. Sutin, Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811(3), 265–322 (1985)

    Article  CAS  Google Scholar 

  57. J. Lehr, J.R. Weeks, A. Santos, G.T. Feliciano, M.I.G. Nicholson, J.J. Davis, P.R. Bueno. Mapping the ionic fingerprints of molecular monolayers. Phys. Chem. Chem. Phys. (2017)

    Google Scholar 

  58. P.R. Bueno, G.T. Feliciano, J.J. Davis, Capacitance spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 9375–9382 (2015)

    Article  CAS  PubMed  Google Scholar 

  59. J. Lehr, F.C.B. Fernandes, P.R. Bueno, J.J. Davis, Label-free capacitive diagnostics: exploiting local redox probe state occupancy. Anal. Chem. 86(5), 2559–2564 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. A. Santos, F.C. Carvalho, M.C. Roque-Barreira, P.R. Bueno, Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity. Biosens. Bioelectron. 62, 102–105 (2014)

    Article  CAS  PubMed  Google Scholar 

  61. A. Santos, P.R. Bueno, Glycoprotein assay based on the optimized immittance signal of a redox tagged and lectin-based receptive interface. Biosens. Bioelectron. 83, 368–378 (2016)

    Article  CAS  PubMed  Google Scholar 

  62. S.M. Marques, A. Santos, L.M. Goncalves, J.C. Sousa, P.R. Bueno, Sensitive label-free electron chemical capacitive signal transduction for D-dimer electroanalysis. Electrochim. Acta 182, 946–952 (2015)

    Article  CAS  Google Scholar 

  63. J.S. Hwang, K.J. Kong, D. Ahn, G.S. Lee, D.J. Ahn, S.W. Hwang, Electrical transport through 60 base pairs of poly(dG)-poly(dC) DNA molecules. Appl. Phys. Lett. 81(6), 1134–1136 (2002)

    Article  CAS  Google Scholar 

  64. D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Direct measurement of electrical transport through DNA molecules. Nature 403(6770), 635–638 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173–181 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. A.K. Mahapatro, K.J. Jeong, G.U. Lee, D.B. Janes, Sequence specific electronic conduction through polyion-stabilized double-stranded DNA in nanoscale break junctions. Nanotechnology 18(19), 195202 (2007)

    Article  CAS  Google Scholar 

  67. E. Meggers, M.E. Michel-Beyerle, B. Giese, Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 120(49), 12950–12955 (1998)

    Article  CAS  Google Scholar 

  68. K.H. Yoo, D.H. Ha, J.O. Lee, J.W. Park, J. Kim, J.J. Kim, H.Y. Lee, T. Kawai, H.Y. Choi, Electrical conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA molecules. Phys. Rev. Lett. 87(19), 198102 (2001)

    Google Scholar 

  69. L.T. Cai, H. Tabata, T. Kawai, Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 77(19), 3105–3106 (2000)

    Article  CAS  Google Scholar 

  70. W.C. Ribeiro, L.M. Goncalves, S. Liebana, M.I. Pividori, P.R. Bueno, Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy. Nanoscale 8(16), 8931–8938 (2016)

    Article  CAS  PubMed  Google Scholar 

  71. E. Wierzbinski, R. Venkatramani, K.L. Davis, S. Bezer, J. Kong, Y. Xing, E. Borguet, C. Achim, D.N. Beratan, D.H. Waldeck, The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. Acs Nano 7(6), 5391–5401 (2013)

    Article  CAS  PubMed  Google Scholar 

  72. H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Bipolar supercurrent in graphene. Nature 446 (7131), 56–59 (2007)

    Article  CAS  PubMed  Google Scholar 

  73. A.V. Patil, F.B. Fernandes, P.R. Bueno, J.J. Davis, Graphene-based protein biomarker detection. Bioanalysis 7(6), 725–742 (2015)

    Article  CAS  PubMed  Google Scholar 

  74. X. Zhang, B.R.S. Rajaraman, H. Liu, S. Ramakrishna, Graphene’s potential in materials science and engineering. RSC Advances 4(55), 28987–29011 (2014)

    Article  CAS  Google Scholar 

  75. F. Sharifi, S. Ghobadian, F.R. Cavalcanti, N. Hashemi, Paper-based devices for energy applications. Renew. Sustain. Energy Rev. 52, 1453–1472 (2015)

    Article  Google Scholar 

  76. J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009)

    Article  CAS  PubMed  Google Scholar 

  77. F.A. Gutierrez, F.C.B. Fernandes, G.A. Rivas, P.R. Bueno, Mesoscopic behaviour of multi-layered graphene: the meaning of supercapacitance revisited. Phys. Chem. Chem. Phys. 19(9), 6792–6806 (2017)

    Article  CAS  PubMed  Google Scholar 

  78. P.R. Bueno, J.J. Davis, Measuring quantum capacitance in energetically addressable molecular layers. Anal. Chem. 86, 1337–1341 (2014)

    Article  CAS  PubMed  Google Scholar 

  79. Y.Q. Xue, M.A. Ratner, Theoretical principles of single-molecule electronics: A chemical and mesoscopic view. Int. J. Quantum Chem. 102(5), 911–924 (2005)

    Article  CAS  Google Scholar 

  80. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65(16) (2002)

    Google Scholar 

  81. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)

    Article  CAS  Google Scholar 

  82. W.C.W. Chan, S.M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998)

    Article  CAS  PubMed  Google Scholar 

  83. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)

    Article  CAS  Google Scholar 

  85. C.W.J. Beenakker, H. Vanhouten, Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–228 (1991)

    Google Scholar 

  86. T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678), 1787–1790 (2004)

    Article  CAS  PubMed  Google Scholar 

  87. F.F. Hudari, G.G. Bessegato, F.C.B. Fernandes, M.V.B. Zanoni, P.R. Bueno, Reagentless detection of low-molecular-weight triamterene using self-doped TiO2 Nanotubes. Anal. Chem. (2018)

    Google Scholar 

  88. J.R. Lakowicz, Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298(1), 1–24 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Roberto Bueno .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bueno, P.R. (2018). Field Effect and Applications. In: Nanoscale Electrochemistry of Molecular Contacts. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-90487-0_3

Download citation

Publish with us

Policies and ethics