Skip to main content

Abstract

An overview of functional magnonic metamaterials is presented. We consider three types of the magnetic structures. First, we demonstrate the frequency-selective spin-wave transmission in irregular tapered magnonic strip with a periodical width modulation. By using space- and time-resolved Brillouin light scattering spectroscopy technique, we measured the features of the intermodal interaction and scattering at the boundaries of the periodical structures. In the vicinity of the band-gap frequency region, the spin-wave spatial patterns depend on the mode interaction in the width-modulated confined magnonic structure. We believe that these results are important for control of the spin-wave propagation in width-modulated magnetic structures for future spintronic and magnonic devices. Second, we consider the irregular magnetic strip with the tapered region. We show that the broken translational symmetry leads to the switching of the mode interferential pattern. We also demonstrate that the non-uniform magnetic field profile forms the conditions for the local three-magnon decay in the irregular magnetic strip. These findings are important for the planar magnonic network concept as the “Beyond CMOS” computing techniques. Next, we propose the side-coupled magnonic crystal with the defect area inside. The coupling of the defects leads to the complicated spin-wave transmission spectra due to the coexistence of the multiple defect modes inside the frequency range of the magnonic band gap. Finally, we present the results of the study of the transformation of dynamic magnetization patterns in a bilayer multiferroic structure . This phenomenon is described with a simple electrodynamic model based on the numerical finite-element method. The studied confined multiferroic strip can be utilized for the fabrication of integrated dual tunable functional devices for magnonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, IEEE Press, 2006)

    Google Scholar 

  2. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  3. S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A.N. Slavin, Y.N. Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Y.P. Sharaevsky, Y.A. Filimonov, Y.V. Khiv- intsev, S.L. Vysotsky, V.K. Sakharov, E.S. Pavlov, Phys. Usp. 58, 1099 (2015)

    Article  ADS  Google Scholar 

  4. V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D Appl. Phys. 43, 264001 (2010)

    Article  ADS  Google Scholar 

  5. V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, A.N. Slavin, S.O. Demokritov, Sci. Rep. 5, 8578 (2015)

    Article  ADS  Google Scholar 

  6. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys. 11, 453–461 (2015)

    Article  Google Scholar 

  7. S.A. Nikitov, Ph. Tailhades, C.S. Tsai, J. Magn. Magn. Mater., 236, 320–330 (2001)

    Google Scholar 

  8. Y. Haiming, O. Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, F. Heimbach, D. Grundler, Nat. Commun. 11255 (2016)

    Google Scholar 

  9. A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves (CRC-Press, London, New York, 1996)

    Google Scholar 

  10. B. Obry, P. Pirro, Th. Bracher, A. Chumak, J. Osten, F. Ciubotaru, Appl. Phys. Lett. 102, 202403 (2013)

    Article  ADS  Google Scholar 

  11. A.V. Chumak, P. Pirro, A.A. Serga, M.P. Kostylev, R.L. Stamps, H. Schultheiss et al., Appl. Phys. Lett. 95, 262508 (2009)

    Article  ADS  Google Scholar 

  12. A.V. Chumak, V.S. Tiberkevich, A.D. Karenowska, A.A. Serga, J.F. Gregg, A.N. Slavin et al., Nat. Commun. 1, 141 (2010)

    Article  ADS  Google Scholar 

  13. S.A. Odintsov, A.V. Sadovnikov, A.A. Grachev, E.N. Beginin, Yu.P. Sharaevskii, S.A. Nikitov, JETP Lett. 104, 8 (2016)

    Article  Google Scholar 

  14. A.V. Sadovnikov, E.N. Beginin, S.A. Odincov, S.E. Sheshukova, Yu.P. Sharaevskii, A.I. Stognij, S.A. Nikitov, Appl. Phys. Lett. 108, 172411 (2016)

    Article  ADS  Google Scholar 

  15. A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Yu.P. Sharaevskii, S.V. Grishin, S.E. Sheshukova, S.A. Nikitov, Appl. Phys. Lett. 109, 042407 (2016)

    Article  ADS  Google Scholar 

  16. V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, S.O. Demokritov, Appl. Phys. Lett. 106, 022403 (2015)

    Article  ADS  Google Scholar 

  17. C.S. Davies, A. Francis, A.V. Sadovnikov, S.V. Chertopalov, M.T. Bryan, S.V. Grishin, D.A. Allwood, Y.P. Sharaevskii, S.A. Nikitov, V.V. Kruglyak, Phys. Rev. B 92, 020408(R) (2015)

    Article  ADS  Google Scholar 

  18. S.-K. Kim, K.-S. Lee, D.-S. Han, Appl. Phys. Lett. 95, 082507 (2009)

    Article  ADS  Google Scholar 

  19. K.H. Chi, Y. Zhu, C.S. Tsai, J. Appl. Phys. 115, 17D125 (2014)

    Article  Google Scholar 

  20. H. Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze, F. Brandl, D. Grundler, Nat. Commun. 4, 2702 (2013)

    Article  ADS  Google Scholar 

  21. T.W. O’Keeffe, R.W. Patterson, J. Appl. Phys. 67, 4868–4895 (1978)

    Google Scholar 

  22. S.N. Bajpai, J. Appl. Phys. 58, 910 (1985)

    Article  ADS  Google Scholar 

  23. S.O. Demokritov, B. Hillebrands, A.N. Slavin, Phys. Rep. 348, 441–489 (2001)

    Article  ADS  Google Scholar 

  24. E.N. Beginin, A.V. Sadovnikov, Yu.P. Sharaevskii, S.A. Nikitov, Bull. Russ. Acad. Sci. Phys. 77, 12 (2013)

    Article  Google Scholar 

  25. E.N. Beginin, A.V. Sadovnikov, Yu.P. Sharaevsky, S.A. Nikitov, Solid State Phenom. 215, 389–393 (2014)

    Article  Google Scholar 

  26. V.E. Demidov, S.O. Demokritov, K. Rott, P. Krzysteczko, G. Reiss, Phys. Rev. B 77, 064406 (2008)

    Article  ADS  Google Scholar 

  27. Y. Sun, Y.-Y. Song, H. Chang, M. Kabatek, M. Jantz, W. Schneider et al., Appl. Phys. Lett. 101, 152405 (2012)

    Article  ADS  Google Scholar 

  28. M. Krawczyk, H. Puszkarski, Phys. Rev. B 77, 054437 (2008)

    Article  ADS  Google Scholar 

  29. V.V. Kruglyak, M.L. Sokolovskii, V.S. Tkachenko, A.N. Kuchko, J. Appl. Phys. 99, 08C906 (2006)

    Article  Google Scholar 

  30. M. Krawczyk, H. Puszkarski, Phys. Rev. B 77, 054437 (2008)

    Article  ADS  Google Scholar 

  31. Yu. Filimonov, E. Pavlov, S. Vystostkii, S. Nikitov, Appl. Phys. Lett. 101, 242408 (2012)

    Article  ADS  Google Scholar 

  32. K. Di, V.L. Zhang, M.H. Kuok, H.S. Lim, S.C. Ng, Phys. Rev. B, 90, 060405R (2014)

    Google Scholar 

  33. M.A. Morozova, A.Yu. Sharaevskaya, A.V. Sadovnikov, S.V. Grishin, D.V. Romanenko, E.N. Beginin, Yu.P. Sharaevskii, S.A. Nikitov, J. Appl. Phys. 120, 223901 (2016)

    Article  ADS  Google Scholar 

  34. E.N. Beginin, Yu.A. Filimonov, E.S. Pavlov, S.L. Vysotskii, S.A. Nikitov, Appl. Phys. Lett. 100, 252412 (2012)

    Article  ADS  Google Scholar 

  35. J.M. Bendickson, J.P. Dowling, M. Scalora, Phys. Rev. E 53, 4107 (1996)

    Article  ADS  Google Scholar 

  36. R.W. Damon, J.R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961)

    Article  ADS  Google Scholar 

  37. B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, Phys. Rep. 507, 107–136 (2011)

    Article  ADS  Google Scholar 

  38. C. Mathieu et al., Phys. Rev. B. 67, 104402 (2003)

    Article  ADS  Google Scholar 

  39. V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, A.N. Slavin, S.O. Demokritov, Sci. Rep. 5, 8578 (2015)

    Article  ADS  Google Scholar 

  40. V.B. Anfinogenov, T.N. Verbitskaya, Y.V. Gulyev, P.E. Zilberman, S.V. Meriakri, Y.F. Ogrin, V.V. Tikhonov, Sov. Tech. Phys. Lett. 12, 389 (1986)

    Google Scholar 

  41. V.B. Anfinogenov, T.N. Verbitskaya, P.E. Zilberman, G.T. Kazakov, S.V. Meriakri, V.V. Tikhonov, Sov. Phys. Tech. Phys. 35, 1068 (1990)

    Google Scholar 

  42. V.E. Demidov, B.A. Kalinikos, P. Edenhofer, J. Appl. Phys. 91, 10007 (2002)

    Article  ADS  Google Scholar 

  43. V.E. Demidov, B.A. Kalinikos, S. Karmanenko, A. Semenov, P. Edenhofer, I.E.E.E. Trans, Microwave Theory Tech. 51, 2090–2096 (2003)

    Article  Google Scholar 

  44. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005)

    Article  ADS  Google Scholar 

  45. A.B. Ustinov, G. Srinivasan, B.A. Kalinikos, Appl. Phys. Lett. 90, 031913 (2007)

    Article  ADS  Google Scholar 

  46. V.E. Demidov, S.O. Demokritov, IEEE Trans. Magn. 51, 0800215 (2015)

    Article  Google Scholar 

  47. S. Sheshukova, E. Beginin, A. Sadovnikov, Y. Sharaevsky, S. Nikitov, I.E.E.E. Magn. Lett. 5, 1–4 (2014)

    Google Scholar 

  48. A.V. Sadovnikov, K.V. Bublikov, E.N. Beginin, S.A. Nikitov, J. Commun. Technol. Electron. 59, 914–919 (2014)

    Article  Google Scholar 

  49. A.V. Sadovnikov, E.N. Beginin, K.V. Bublikov, S.V. Grishin, S.E. Sheshukova, Y.P. Sharaevskii, S.A. Nikitov, J. Appl. Phys. 118, 203906 (2015)

    Article  ADS  Google Scholar 

  50. A.V. Sadovnikov, A.G. Rozhnev, Appl. Nonlinear Dyn. [Izvestiya VUZ: (in Russian)] 20(1) (2012)

    Google Scholar 

  51. V.E. Demidov, B.A. Kalinikos, P. Edenhofer, Tech. Phys. 47, 343 (2002)

    Article  Google Scholar 

  52. A.B. Ustinov, A.V. Kondrashov, A.A. Nikitin, M.A. Cherkasskii, B.A. Kalinikos, JETP Lett. 100, 835 (2015)

    Article  ADS  Google Scholar 

  53. A.V. Sadovnikov, A.A. Grachev, E.N. Beginin, S.E. Sheshukova, Yu.P. Sharaevskii, S.A. Nikitov, Voltage-controlled spin-wave coupling in adjacent ferromagnetic-ferroelectric heterostructures. Phys. Rev. Appl. 7, 014013 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in a part by the Grant from Russian Science Foundation (Project No. 16-19-10283, 14-19-00760) and the Grant of the President of Russian Federation (No. MK-3650.2018.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nikitov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharaevsky, Y.P., Sadovnikov, A.V., Beginin, E.N., Sharaevskaya, A.Y., Sheshukova, S.E., Nikitov, S.A. (2018). Functional Magnetic Metamaterials for Spintronics. In: Sidorenko, A. (eds) Functional Nanostructures and Metamaterials for Superconducting Spintronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-90481-8_11

Download citation

Publish with us

Policies and ethics