Skip to main content

Topology-Driven Effects in Advanced Micro- and Nanoarchitectures

  • Chapter
  • First Online:
Functional Nanostructures and Metamaterials for Superconducting Spintronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

An overview is given about some of topological effects , owing to special geometries in real space, implemented by the high-tech self-organization techniques to fabricate micro- and nanoarchitectures. Self-assembled quantum volcanos, which are singly connected, surprisingly exhibit the Aharonov–Bohm behavior in experiment. This is explained by the fact that in a quantum volcano the electron wave functions are identical to the electron wave functions in a quantum ring from a topological point of view. Combination of a geometric potential and an inhomogeneous twist renders an observation of the topology-driven effects in the electron ground-state energy in Möbius rings at the microscale into the area of experimental verification. In inhomogeneous Möbius rings , a “Delocalization-to-localization” transition is found for the electron ground state. Advances in the high-tech roll-up fabrication methods have provided qualitatively novel curved superconductor micro- and nanoarchitectures, e.g., nanostructured microtubes, microhelices and their arrays. Vortex dynamics in open superconductor microtubes in the presence of a transport current are influenced by the interplay between the scalar potential and the inhomogeneous magnetic field component, which is normal to the surface. The rolled-up conical-shaped asymmetric microcavities provide a background to realize the spin–orbit interaction of light for the analysis of topological effects in the course of a non-Abelian evolution. Robustness of the topologically induced geometric phase of light opens novel ways of manipulating photons and thus implies promising perspectives of applications in on-chip quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.M. Fomin (ed.), Physics of Quantum Rings (Springer, Berlin-Heidelberg, 2014) 487 p.; Physics of Quantum Rings, 2nd edn. (Springer, Berlin-Heidelberg, 2018) (in press)

    Google Scholar 

  2. V.M. Fomin, S. Kiravittaya, O.G. Schmidt, Phys. Rev. B 86, 195421 (2012)

    Article  ADS  Google Scholar 

  3. C. Kern, M. Kadic, M. Wegener, Phys. Rev. Lett. 118, 016601 (2017)

    Article  ADS  Google Scholar 

  4. L.B. Ma, S.L. Li, V.M. Fomin, M. Hentschel, J.B. Götte, Y. Yin, M.R. Jorgensen, O.G. Schmidt, Nat. Commun. 7, 10983 (2016)

    Article  ADS  Google Scholar 

  5. R.-P. Riwar, M. Houzet, J.S. Meyer, Y.V. Nazarov, Nat. Commun. 7, 11167 (2016)

    Article  ADS  Google Scholar 

  6. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Science 343, 636 (2013)

    Article  ADS  Google Scholar 

  7. O.V. Pylypovskyi, V.P. Kravchuk, D.D. Sheka, D. Makarov, O.G. Schmidt, Y. Gaididei, Phys. Rev. Lett. 114, 197204 (2015)

    Article  ADS  Google Scholar 

  8. D.R. Streubel, P. Fischer, F. Kronast, V.P. Kravchuk, D.D. Sheka, Y. Gaididei, O.G. Schmidt, D. Makarov, J. Phys. D: Appl. Phys. 49, 363001 (2016)

    Article  Google Scholar 

  9. K. v. Klitzing, G. Dorda und M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  10. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  11. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  12. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, Q.-K. Xue, Science 340, 167 (2013)

    Article  ADS  Google Scholar 

  13. Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M.Z. Hasan, Y.P. Chen, Nat. Phys. 10, 956 (2014)

    Article  Google Scholar 

  14. C. Beenakker, L. Kouwenhoven, Nat. Phys. 12, 618 (2016)

    Article  Google Scholar 

  15. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B.K. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  16. L. Lu, J.D. Joannopoulos, M. Soljačić, Nat. Phys. 12, 627 (2016)

    Google Scholar 

  17. R. Süsstrunk, S.D. Huber, Science 349, 47 (2015)

    Article  ADS  Google Scholar 

  18. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazenskii, M.A. Putyato, T.A. Gavrilova, Physica E 6, 828 (2000)

    Article  ADS  Google Scholar 

  19. O.G. Schmidt, K. Eberl, Nature 410, 168 (2001)

    Article  ADS  Google Scholar 

  20. V.M. Fomin, R.O. Rezaev, O.G. Schmidt, Nano Lett. 12, 1282 (2012)

    Article  ADS  Google Scholar 

  21. R.O. Rezaev, V.M. Fomin, O.G. Schmidt, Physica C 497, 1 (2014)

    Article  ADS  Google Scholar 

  22. R.O. Rezaev, E.A. Levchenko, O.G. Schmidt, V.M. Fomin, Russ. J. Phys. 5, 35 (2015)

    Google Scholar 

  23. R.O. Rezaev, E.A. Levchenko, V.M. Fomin, Sup. Sci. Technol. 29, 045014 (2016)

    Article  ADS  Google Scholar 

  24. V.M. Fomin (ed.), A special issue on modern advancements in experimental and theoretical physics of quantum rings. J. Nanoelectron. Optoelectron. 6, 1–86 (2011)

    Google Scholar 

  25. S.M. Rytov, Dokl. Akad. Nauk SSSR 18, 263 (1938). [English translation in: B. Markovsky, S.I. Vinitsky (eds.), Topological Phases in Quantum Theory (World Scientific, Singapore, 1989), pp. 6–10.]

    Google Scholar 

  26. V.V. Vladimirskii, Dokl. Akad. Nauk SSSR 21, 222 (1941). [English translation in: B. Markovsky, S.I. Vinitsky (eds.), Topological Phases in Quantum Theory (World Scientific, Singapore, 1989), pp. 11–16.]

    Google Scholar 

  27. S. Pancharatnam, Proc. Ind. Acad. Sci. A 44, 247 (1956)

    MathSciNet  Google Scholar 

  28. M.V. Berry, Proc. R. Soc. London A 392, 45 (1984)

    Article  ADS  Google Scholar 

  29. M. Born, V. Fock, Z. Phys. 51, 165 (1928)

    Article  ADS  Google Scholar 

  30. Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  32. W. Ehrenburg, R.E. Siday, Proc. R. Soc. Lond. B 62, 8 (1949)

    Article  Google Scholar 

  33. P. Offermans, P.M. Koenraad, J.H. Wolter, D. Granados, J.M. García, V.M. Fomin, V.N. Gladilin, J.T. Devreese, Appl. Phys. Lett. 87, 131902 (2005)

    Article  ADS  Google Scholar 

  34. V.M. Fomin, V.N. Gladilin, J.T. Devreese, P. Offermans, P.M. Koenraad, J.H. Wolter, J.M. García, D. Granados, AIP Conf. Proc. 772, 803 (2005)

    Google Scholar 

  35. V.M. Fomin, V.N. Gladilin, S.N. Klimin, J.T. Devreese, N.A.J.M. Kleemans, P.M. Koenraad, Phys. Rev. B 76, 235320 (2007)

    Article  ADS  Google Scholar 

  36. N.A.J.M. Kleemans, I.M.A. Bominaar-Silkens, V.M. Fomin, V.N. Gladilin, D. Granados, A.G. Taboada, J.M. García, P. Offermans, U. Zeitler, P.C.M. Christianen, J.C. Maan, J.T. Devreese, P.M. Koenraad, Phys. Rev. Lett. 99, 146808 (2007)

    Article  ADS  Google Scholar 

  37. T.-C. Lin, C.-H. Lin, H.-S. Ling, Y.-J. Fu, W.-H. Chang, S.-D. Lin, C.-P. Lee, Phys. Rev. B 80, 081304(R) (2009)

    Article  ADS  Google Scholar 

  38. H.D. Kim, K. Kyhm, R.A. Taylor, G. Nogues, K.C. Je, E.H. Lee, J.D. Song, Appl. Phys. Lett. 102, 033112 (2013)

    Article  ADS  Google Scholar 

  39. J.T. Devreese, V.M. Fomin, V.N. Gladilin, J. Tempere, Physica C 470, 848 (2010)

    Article  ADS  Google Scholar 

  40. Z. Li, L.R. Ram-Mohan, Phys. Rev. B 85, 195438 (2012)

    Article  ADS  Google Scholar 

  41. J. Gravesen, M. Willatzen, Phys. Rev. A 72, 032108 (2005)

    Article  ADS  Google Scholar 

  42. S.O. Demokritov, A.A. Serga, V.E. Demidov, B. Hillebrands, M.P. Kostylev, B.A. Kalinikos, Nature 426, 159 (2003)

    Article  ADS  Google Scholar 

  43. A.F. Möbius, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften. Mathematisch-physikalische Klasse 17, 31 (1865)

    Google Scholar 

  44. R.C.T. Da Costa, Phys. Rev. A 23, 1982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  45. C.J. Isham, Proc. R. Soc. London A 362, 383 (1978)

    Article  ADS  Google Scholar 

  46. J.S. Dowker, R. Banach, J. Phys. A 11, 2255 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  47. B.S. DeWitt, C.F. Hart, C.J. Isham, Physica 96A, 197 (1979)

    Article  ADS  Google Scholar 

  48. J.P. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  49. M. Tinkham, Introduction to Superconductivity (McGraw-Hill Inc, Singapore, 1996)

    Google Scholar 

  50. V.M. Fomin, R.O. Rezaev, E.A. Levchenko, D. Grimm, O.G. Schmidt, J. Phys.: Condens. Mater. 29, 395301, 1 (2017)

    Google Scholar 

  51. S.L. Li, L.B. Ma, V.M. Fomin, S. Böttner, M. R. Jorgensen, O.G. Schmidt, arXiv:1311.7158 [physics.optics], 1–9 (2013)

    Google Scholar 

  52. D.J. Ballon, H.U. Voss, Phys. Rev. Lett. 101, 247701 (2008)

    Article  ADS  Google Scholar 

  53. M.V. Berry, Nature 326, 277 (1987)

    Article  ADS  Google Scholar 

  54. Y. Yin, S. Li, V. Engemaier, E.S.G. Naz, S. Giudicatti, L. Ma, O.G. Schmidt, Laser & Photonics Rev. 11, 1600219 (2017)

    Google Scholar 

  55. K.Y. Bliokh, D.Y. Frolov, Y.A. Kravtsov, Phys. Rev. A 75, 053821 (2007)

    Article  ADS  Google Scholar 

  56. K.Y. Bliokh, A. Niv, V. Kleiner, E. Hasman, Nat. Photonics 2, 748 (2008)

    Article  ADS  Google Scholar 

  57. M. Le Bellac, Quantum Physics (Cambridge University Press, Cambridge, 2006), p. 85

    Book  Google Scholar 

Download references

Acknowledgements

The author is grateful to A. V. Chaplik, J. T. Devreese, J. M. García, V. N. Gladilin, S. Kiravittaya, P. M. Koenraad, S. L. Li, L. B. Ma, R. O. Rezaev, O. G. Schmidt, and L. Wendler for fruitful collaborations in the field of the topology-driven effects in advanced nanoarchitectures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Fomin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fomin, V.M. (2018). Topology-Driven Effects in Advanced Micro- and Nanoarchitectures. In: Sidorenko, A. (eds) Functional Nanostructures and Metamaterials for Superconducting Spintronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-90481-8_10

Download citation

Publish with us

Policies and ethics