Skip to main content

Some Recent Developments in Optimal Control of Multiphase Flows

  • Chapter
  • First Online:
  • 507 Accesses

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 169))

Abstract

The present work serves as a review of some current developments in optimal control of two-phase flows. We discuss the upcoming analytical and numerical challenges and illustrate adequate solution strategies. This includes, among other things, the existence proof of solutions to a coupled Cahn–Hilliard–Navier–Stokes system, the derivation of first order optimality conditions for the associated optimal control problem in the presence of a nonsmooth free energy density. Moreover, we study spatial mesh adaptivity concepts based on a dual weighted residual approach and address future research directions concerned with the derivation of stronger stationarity conditions and/or the design of more efficient numerical solution algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abels, H., Depner, D., Garcke, H.: Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities. J. Math. Fluid Mech. 15(3), 453–480 (2013). https://doi.org/10.1007/s00021-012-0118-x.

    Article  MathSciNet  Google Scholar 

  2. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013, 40pp (2012). https://doi.org/10.1142/S0218202511500138.

  3. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, second edn. Elsevier/Academic Press, Amsterdam (2003).

    Google Scholar 

  4. Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. International Journal for Numerical Methods in Fluids 73(4), 344–361 (2013)

    Article  Google Scholar 

  5. Aland, S., Lowengrub, J., Voigt, A.: Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model. Physical Review E 86(4 Pt 2), 046321 (2012)

    Article  Google Scholar 

  6. Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids 69, 747–761 (2012)

    Article  MathSciNet  Google Scholar 

  7. Aubin, J.P.: Applied functional analysis. John Wiley & Sons, New York-Chichester-Brisbane (1979). Translated from the French by Carole Labrousse, With exercises by Bernard Cornet and Jean-Michel Lasry

    Google Scholar 

  8. Baňas, L., Nürnberg, R.: Adaptive finite element methods for Cahn–Hilliard equations. Journal of Computational and Applied Mathematics 218, 2–11 (2008)

    Article  MathSciNet  Google Scholar 

  9. Baňas, L., Nürnberg, R.: A posteriori estimates for the Cahn–Hilliard equation. Mathematical Modelling and Numerical Analysis 43(5), 1003–1026 (2009)

    Article  MathSciNet  Google Scholar 

  10. Blank, L., Butz, M., Garcke, H.: Solving the Cahn–Hilliard variational inequality with a semi-smooth Newton method. ESAIM: Control, Optimisation and Calculus of Variations 17(4), 931–954 (2011)

    Article  MathSciNet  Google Scholar 

  11. Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis. European Journal of Applied Mathematics 2, 233–280 (1991)

    MATH  Google Scholar 

  12. Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Computers & Fluids 31(1), 41–68 (2002)

    Article  Google Scholar 

  13. Boyer, F., Chupin, L., Fabrie, P.: Numerical study of viscoelastic mixtures through a Cahn-Hilliard flow model. Eur. J. Mech. B Fluids 23(5), 759–780 (2004). https://doi.org/10.1016/j.euromechflu.2004.03.001

    Article  MathSciNet  Google Scholar 

  14. Brett, C., Elliott, C.M., Hintermüller, M., Löbhard, C.: Mesh adaptivity in optimal control of elliptic variational inequalities with point-tracking of the state. Interfaces Free Bound. 17(1), 21–53 (2015). https://doi.org/10.4171/IFB/332

    Article  MathSciNet  Google Scholar 

  15. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics 28(2), 258–267 (1958)

    Google Scholar 

  16. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986). https://doi.org/10.1137/0324078

    Article  MathSciNet  Google Scholar 

  17. Colli, P., Farshbaf-Shaker, M.H., Gilardi, G., Sprekels, J.: Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials. SIAM J. Control Optim. 53(4), 2696–2721 (2015). https://doi.org/10.1137/140984749

    Article  MathSciNet  Google Scholar 

  18. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous cahn–hilliard equation with dynamic boundary conditions. Applied Mathematics & Optimization 73(2), 195–225 (2016). https://doi.org/10.1007/s00245-015-9299-z

    Article  MathSciNet  Google Scholar 

  19. Ding, H., Spelt, P.D., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. Journal of Computational Physics 226(2), 2078–2095 (2007)

    Article  Google Scholar 

  20. Eckert, S., Nikrityuk, P.A., Willers, B., Räbiger, D., Shevchenko, N., Neumann-Heyme, H., Travnikov, V., Odenbach, S., Voigt, A., Eckert, K.: Electromagnetic melt flow control during solidification of metallic alloys. The European Physical Journal Special Topics 220(1), 123–137 (2013)

    Article  Google Scholar 

  21. Elliott, C.M., Songmu, Z.: On the Cahn-Hilliard equation. Arch. Rational Mech. Anal. 96(4), 339–357 (1986). https://doi.org/10.1007/BF00251803

    Article  MathSciNet  Google Scholar 

  22. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in two dimensions. SIAM J. Control Optim. 54(1), 221–250 (2016). https://doi.org/10.1137/140994800

    Article  MathSciNet  Google Scholar 

  23. Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 401–436 (2010). https://doi.org/10.1016/j.anihpc.2009.11.013

    Article  MathSciNet  Google Scholar 

  24. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Applied Numerical Mathematics 99, 151–171 (2016). https://doi.org/10.1016/j.apnum.2015.09.002; http://www.sciencedirect.com/science/article/pii/S0168927415001324

  25. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-61623-5.

  26. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: Stable schemes for a thermodynamic consistent and frame indifferent diffuse interface model. Journal of Computational Physics 257(A), 708–725 (2014)

    Article  MathSciNet  Google Scholar 

  27. Guillén-Gonzáles, F., Tierra, G.: Splitting schemes for a Navier–Stokes–Cahn–Hilliard model for two fluids with different densities. Journal of Computational Mathematics 32(6), 643–664 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Héron, B.: Quelques propriétés des applications de trace dans des espaces de champs de vecteurs à divergence nulle. Comm. Partial Differential Equations 6(12), 1301–1334 (1981). https://doi.org/10.1080/03605308108820212

    Article  MathSciNet  Google Scholar 

  29. Hintermüller, M., Hinze, M., Kahle, C., Keil, T.: A goal-oriented dual-weighted adaptive finite element approach for the optimal control of a nonsmooth Cahn–Hilliard–Navier–Stokes system. Optimization and Engineering (2018). https://doi.org/10.1007/s11081-018-9393-6

  30. Hintermüller, M., Hinze, M., Kahle, C.: An adaptive finite element Moreau–Yosida-based solver for a coupled Cahn–Hilliard/Navier–Stokes system. Journal of Computational Physics 235, 810–827 (2013)

    Article  MathSciNet  Google Scholar 

  31. Hintermüller, M., Hinze, M., Tber, M.H.: An adaptive finite-element Moreau-Yosida-based solver for a non-smooth Cahn-Hilliard problem. Optim. Methods Softw. 26(4–5), 777–811 (2011). https://doi.org/10.1080/10556788.2010.549230

    Article  MathSciNet  Google Scholar 

  32. Hintermüller, M., Keil, T., Wegner, D.: Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system with nonmatched fluid densities. SIAM J. Control Optim. 55(3), 1954–1989 (2017). https://doi.org/10.1137/15M1025128

    Article  MathSciNet  Google Scholar 

  33. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902 (2009). https://doi.org/10.1137/080720681

    Article  MathSciNet  Google Scholar 

  34. Hintermüller, M., Mordukhovich, B.S., Surowiec, T.M.: Several approaches for the derivation of stationarity conditions for elliptic MPECs with upper-level control constraints. Math. Program. 146(1–2, Ser. A), 555–582 (2014). https://doi.org/10.1007/s10107-013-0704-6

  35. Hintermüller, M., Surowiec, T.: A bundle-free implicit programming approach for a class of elliptic MPECs in function space. Mathematical Programming 160(1), 271–305 (2016). https://doi.org/10.1007/s10107-016-0983-9

    Article  MathSciNet  Google Scholar 

  36. Hintermüller, M., Wegner, D.: Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50(1), 388–418 (2012). https://doi.org/10.1137/110824152

    Article  MathSciNet  Google Scholar 

  37. Hintermüller, M., Wegner, D.: Optimal control of a semidiscrete Cahn-Hilliard-Navier-Stokes system. SIAM J. Control Optim. 52(1), 747–772 (2014). https://doi.org/10.1137/120865628

    Article  MathSciNet  Google Scholar 

  38. Hintermüller, M., Wegner, D.: Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies. In: U. Langer, H. Albrecher, H. Engl, R. Hoppe, K. Kunisch, H. Niederreiter, C. Schmeisser (eds.) Topological Optimization and Optimal Transport, Radon Series on Computational and Applied Mathematics, vol. 17. De Gruyter (2017)

    Google Scholar 

  39. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Reviews of Modern Physics 49(3), 435 (1977)

    Article  Google Scholar 

  40. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. International Journal for Numerical Methods in Fluids 60(11), 1259–1288 (2009). https://doi.org/10.1002/fld.1934; http://onlinelibrary.wiley.com/doi/10.1002/fld.1934/abstract

  41. Jarušek, J., Krbec, M., Rao, M., Sokołowski, J.: Conical differentiability for evolution variational inequalities. J. Differential Equations 193(1), 131–146 (2003). https://doi.org/10.1016/S0022-0396(03)00136-0

  42. Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces and Free Boundaries 10(1), 15–43 (2008). http://www.ems-ph.org/journals/show_issue.php?issn=1463-9963&vol=10&iss=1

  43. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. Journal of Computational Physics 212, 288–304 (2006)

    Article  MathSciNet  Google Scholar 

  44. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004). https://doi.org/10.1016/j.jcp.2003.07.035

    Article  MathSciNet  Google Scholar 

  45. Kim, J., Lowengrub, J.: Interfaces and multicomponent fluids. Encyclopedia of Mathematical Physics pp. 135–144 (2004)

    Google Scholar 

  46. Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications, Classics in Applied Mathematics, vol. 31. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). https://doi.org/10.1137/1.9780898719451. Reprint of the 1980 original

  47. Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972). https://doi.org/10.1007/978-3-642-65161-8

  48. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998). https://doi.org/10.1098/rspa.1998.0273

    Article  MathSciNet  Google Scholar 

  49. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511983658

  50. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Functional Analysis 22(2), 130–185 (1976)

    Article  MathSciNet  Google Scholar 

  51. Oono, Y., Puri, S.: Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling. Physical Review A 38(1), 434 (1988)

    Article  Google Scholar 

  52. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth approach to optimization problems with equilibrium constraints: Theory, applications and numerical results, Nonconvex Optimization and its Applications, vol. 28. Kluwer Academic Publishers, Dordrecht (1998). https://doi.org/10.1007/978-1-4757-2825-5.

  53. Praetorius, S., Voigt, A.: A phase field crystal model for colloidal suspensions with hydrodynamic interactions. arXiv preprint arXiv:1310.5495 (2013)

    Google Scholar 

  54. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000). https://doi.org/10.1287/moor.25.1.1.15213

    Article  MathSciNet  Google Scholar 

  55. Tachim Medjo, T.: Optimal control of a Cahn-Hilliard-Navier-Stokes model with state constraints. J. Convex Anal. 22(4), 1135–1172 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Temam, R.: Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977). Studies in Mathematics and its Applications, Vol. 2

    Google Scholar 

  57. Verfürth, R.: A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations. Calcolo 47(3), 149–167 (2010). https://doi.org/10.1007/s10092-010-0018-5

    Article  MathSciNet  Google Scholar 

  58. Wang, Q.F., Nakagiri, S.I.: Weak solutions of Cahn-Hilliard equations having forcing terms and optimal control problems. Sūrikaisekikenkyūsho Kōkyūroku (1128), 172–180 (2000). Mathematical models in functional equations (Japanese) (Kyoto, 1999)

    Google Scholar 

  59. Yong, J.M., Zheng, S.M.: Feedback stabilization and optimal control for the Cahn-Hilliard equation. Nonlinear Anal. 17(5), 431–444 (1991). https://doi.org/10.1016/0362-546X(91)90138-Q

    Article  MathSciNet  Google Scholar 

  60. Zhou, B., et al.: Simulations of polymeric membrane formation in 2D and 3D. Ph.D. thesis, Massachusetts Institute of Technology (2006)

    Google Scholar 

  61. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979). https://doi.org/10.1007/BF01442543

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the DFG through the priority program 1506 “Transport processes at fluidic interfaces” under the grant HI 1466/2-1 and the DFG-AIMS Workshop in Mbour, Sénégal. This research was further supported by the Research Center MATHEON through project C-SE5 and D-OT1 funded by the Einstein Center for Mathematics Berlin. In addition, this research was partly supported by the Berlin Mathematical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hintermüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hintermüller, M., Keil, T. (2018). Some Recent Developments in Optimal Control of Multiphase Flows. In: Schulz, V., Seck, D. (eds) Shape Optimization, Homogenization and Optimal Control . International Series of Numerical Mathematics, vol 169. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-90469-6_7

Download citation

Publish with us

Policies and ethics