Skip to main content

Homogenization in Magnetic-Shape-Memory Polymer Composites

  • Chapter
  • First Online:

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 169))

Abstract

Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a large change of shape to the presence of an external magnetic field. As an alternative for the difficult to manufacture single crystal of these alloys we study composite materials in which small magnetic-shape-memory particles are embedded in a polymer matrix. The macroscopic properties of the composite depend strongly on the geometry of the microstructure and on the characteristics of the particles and the polymer.

We present a variational model based on micromagnetism and elasticity, and derive via homogenization an effective macroscopic model under the assumption that the microstructure is periodic. We then study numerically the resulting cell problem, and discuss the effect of the microstructure on the macroscopic material behavior. Our results may be used to optimize the shape of the particles and the microstructure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Allaire. Shape optimization by the homogenization method, volume 146 of Applied Mathematical Sciences. Springer, New York, 2002.

    MATH  Google Scholar 

  2. A. Braides and A. Defranceschi. Homogenization of multiple integrals. Claredon Press, Oxford, 1998.

    MATH  Google Scholar 

  3. K. Bhattacharya. Microstructure of Martensite: Why it forms and how it gives rise to the Shape-Memory Effect. Oxford University Press, Oxford, 2003.

    MATH  Google Scholar 

  4. J. Ball and R. D. James. Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Analysis, 100:13, 1987.

    Article  MathSciNet  Google Scholar 

  5. W. Brown. Micromagnetics. Wiley, New York, 1963.

    MATH  Google Scholar 

  6. D. Cioranescu and P. Donato. An introduction to homogenization. Oxford University Press, Oxford, 1999.

    MATH  Google Scholar 

  7. S. Conti, M. Lenz, and M. Rumpf. Modeling and simulation of magnetic shape-memory polymer composites. J. Mech. Phys. Solids, 55:1462, 2007.

    Article  MathSciNet  Google Scholar 

  8. S. Conti, M. Lenz, and M. Rumpf. Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites. Mat. Sci. Engrg. A, 481–482:351, 2008.

    Article  Google Scholar 

  9. S. Conti, M. Lenz, and M. Rumpf. Modeling and simulation of large microstructured particles in magnetic-shape-memory. Adv. Eng. Mater., 14:582–588, 2012.

    Article  Google Scholar 

  10. S. Conti, M. Lenz, and M. Rumpf. Hysteresis in magnetic shape memory composites: modeling and simulation. J. Mech. Phys. Solids, 89:272–286, 2016.

    Article  MathSciNet  Google Scholar 

  11. A. Desimone. Energy minimizers for large ferromagnetic bodies. Arch. Rat. Mech. Anal., 125:99, 1993.

    Article  MathSciNet  Google Scholar 

  12. J. Feuchtwanger et al. Energy absorpion in Ni-Mn-Ga polymer composites. J. Appl. Phys., 93:8528, 2003.

    Article  Google Scholar 

  13. J. Feuchtwanger et al. Large energy absorpion in Ni-Mn-Ga polymer composites. J. Appl. Phys., 97:10M319, 2005.

    Google Scholar 

  14. A. Hubert and R. Schäfer. Magnetic domains. Springer, Berlin, 1998.

    Google Scholar 

  15. O. Heczko, N. Scheerbaum, and O. Gutfleisch. Magnetic shape memory phenomena. In Nanoscale magnetic materials and applications, pp. 399–439. Springer, 2009.

    Google Scholar 

  16. H. Hosoda, S. Takeuchi, T. Inamura, and K. Wakashima. Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Sci. Technol. Adv. Mater., 5:503, 2004.

    Article  Google Scholar 

  17. S. Kauffmann-Weiss, N. Scheerbaum, J. Liu, H. Klauss, L. Schultz, E. Mäder, R. Häßler, G. Heinrich, and O. Gutfleisch. Reversible magnetic field induced strain in Ni2MnGa-polymer-composites. Adv. Eng. Mater., 14:20–27, 2012.

    Article  Google Scholar 

  18. J. Liu, N. Scheerbaum, S. Kauffmann-Weiss, and O. Gutfleisch. NiMn-based alloys and composites for magnetically controlled dampers and actuators. Adv. Eng. Mater., 8:653–667, 2012.

    Article  Google Scholar 

  19. J. Liu, N. Scheerbaum, S. Weiß, and O. Gutfleisch. Ni–Mn–In–Co single-crystalline particles for magnetic shape memory composites. Applied Physics Letters, 95:152503, 2009.

    Article  Google Scholar 

  20. G. W. Milton. The theory of composites. Cambridge University Press, Cambridge, 2002.

    Book  Google Scholar 

  21. S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, and T. A. Lograsso. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett., 77:886, 2000.

    Article  Google Scholar 

  22. M. Pawelczyk. Homogenization for magnetic shape memory materials. Master’s thesis, Universität Bonn, 2014.

    Google Scholar 

  23. G. Pisante. Homogenization of micromagnetics large bodies. ESAIM: control, optimisation and calculus of variations, 10:295–314, 2004.

    Article  MathSciNet  Google Scholar 

  24. M. Pitteri and G. Zanzotto. Continuum models for phase transitions and twinning in crystals. CRC/Chapman & Hall, London, 2003.

    MATH  Google Scholar 

  25. N. Scheerbaum, D. Hinz, O. Gutfleisch, K.-H. Müller, and L. Schultz. Textured polymer bonded composites with NiMnGa magnetic shape memory particles. Acta Mater., 55:2707, 2007.

    Article  Google Scholar 

  26. A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullako. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett., 80:1746, 2002.

    Article  Google Scholar 

  27. B. Tian, F. Chen, Y. Tong, L. Li, and Y. Zheng. Bending properties of epoxy resin matrix composites filled with Ni-Mn-Ga ferromagnetic shape memory alloy powders. Materials Letters, 63:1729–1732, 2009.

    Article  Google Scholar 

  28. B. Tian, F. Chen, Y. Tong, L. Li, and Y. Zheng. Magnetic field induced strain and damping behavior of Ni-Mn-Ga particles/epoxy resin composite. Journal of Alloys and Compounds, 604:137–141, 2014.

    Article  Google Scholar 

  29. R. Tickle, R. James, T. Shield, M. Wuttig, and V. Kokorin. Ferromagnetic shape memory in the NiMnGa system. IEEE Trans. Magn., 35:4301–4310, 1999.

    Article  Google Scholar 

  30. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett., 69:1966, 1996.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft through Schwerpunktprogramm 1239 Änderung von Mikrostruktur und Form fester Werkstoffe durch äußere Magnetfelder and through Sonderforschungsbereich 1060 Die Mathematik der emergenten Effekte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conti, S., Lenz, M., Pawelczyk, M., Rumpf, M. (2018). Homogenization in Magnetic-Shape-Memory Polymer Composites. In: Schulz, V., Seck, D. (eds) Shape Optimization, Homogenization and Optimal Control . International Series of Numerical Mathematics, vol 169. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-90469-6_1

Download citation

Publish with us

Policies and ethics