Skip to main content

Simple Estimations for Planetary Convection Turbulence and Dynamo Magnetism from Optimized Scaling and Observations

  • Conference paper
  • First Online:
Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 536 Accesses

Abstract

My optimal similarity factors allow arguing the planetary turbulent convection to be close to its critical level with turbulent transport coefficients higher than the molecular values. These strongly simplify numerical models for the primordial and recent convection and correspondent magnetic field of the planets and moons. Mean arithmetic magnetic field in the dynamo region is well defined by the observable magnetic dipole. The Earth, Jupiter and Saturn have that mean fields of order 1 mT and small inclination of their dipoles to the axis of rotation. Thus, similar dynamo models are successful for those planets. The Uranus and Neptune also have ~1 mT, but their dipoles are strongly inclined requiring some modifications in dynamo modeling. The major problems are posed by too small and asymmetric magnetic field in Mercury/Ganymede and absence of an active dynamo in Venus/Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubert J., Gastine T., Fournier A. Spherical convective dynamos in the rapidly rotating asymptotic regime // J. Fluid Mech. V. 813. P. 558–593. 2017.

    Google Scholar 

  • Bassom, A.P., Soward, A.M., Starchenko, S.V. The onset of strongly localized thermal convection in rotating spherical shells // J. Fluid Mech. V. 689. P. 376–416. 2011.

    Google Scholar 

  • Breuer D., Rueckriemen T., Spohn T. Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons // Progress in Earth and Planetary Science. V. 2. No. 39. 2015. https://doi.org/10.1186/s40645-015-0069-y.

  • Cheng J. S., Stellmach S., Ribeiro A., Grannan A., King E. M., Aurnou J. M. Laboratory-numerical models of rapidly rotating convection in planetary cores // Geophys. J. Int. V. 201. P. 1–17. 2015.

    Google Scholar 

  • Cheng J.S., Aurnou J.M., Tests of diffusion-free scaling behaviors in numerical dynamo datasets // Earth and Planetary Science Letters. V. 436. P. 121–129. 2016.

    Google Scholar 

  • Christensen U.R. A deep dynamo generating Mercury’s magnetic field // Nature. V. 444. P. 1056–1058. 2006a.

    Google Scholar 

  • Christensen U.R. Dynamo Scaling Laws and Applications to the Planets // Space Sci Rev. V. 152. P. 565–590. 2010a.

    Google Scholar 

  • Christensen U.R., Aubert J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields // Geophys. J. Int. V. 166. P. 97–114. 2006b.

    Google Scholar 

  • Christensen U., Aubert J., Hulot G. Conditions for Earth-like geodynamo models // Earth Planet. Sci. Lett. V. 296. P. 487–496. 2010b.

    Google Scholar 

  • Davidson P.A. An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, 2006.

    Google Scholar 

  • Frick P.G. Turbulence: models and approaches. Lecture course (2nd edition in Russian). Perm State Technical University. Part I. Perm. 2010.

    Google Scholar 

  • Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Phys. Earth Planet. Int. V. 91 (1–3). P. 63–75. 1995.

    Google Scholar 

  • Jackson A., Jonkers A. R. T., Walker M. R. Four centuries of geomagnetic secular variation from historical records // Phil. Trans. R. Soc. Lond. V. A358. P. 957–990. 2000.

    Google Scholar 

  • Khramov A.N., Goncharov G.I., Komisarova R.A., et al. Paleomagnetologia. L.: Nedra. 1982. 312 pp.

    Google Scholar 

  • King E.M., Buffett B.A. Flow speeds and length scales in geodynamo models: The role of viscosity // Earth Planet. Sci. Lett. V. 371. P. 156–162. 2013.

    Google Scholar 

  • Korte, M., Constable, C.G. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7 K // Geochem. Geophys. Geosys. 6 Q02H16. 2005.

    Google Scholar 

  • Korte M., Constable C. Improving geomagnetic field reconstructions for 0-3 ka // Phys. Earth Planet. Int. V. 188. P. 247–259. 2011.

    Google Scholar 

  • Macouin M., Valet J.-P., Besse J. Long-term evolution of the geomagnetic dipole moment // Phys. Earth Planet. Int. V. 147. P. 239–246. 2004.

    Google Scholar 

  • Matsui H. et al. (37 authors), Performance benchmarks for a next generation numerical dynamo model // Geochem. Geophys. Geosyst. V. 17 (5). P. 1586–1607. 2016.

    Google Scholar 

  • Ness N.F. Space Exploration of Planetary Magnetism // Space Sci Rev. V. 152. P. 5–22. 2010.

    Google Scholar 

  • Olson P., Christensen U.R. Dipole moment scaling for convection-driven planetary dynamos // Earth Planet. Sci. Lett. V. 250. P. 561–571. 2006.

    Google Scholar 

  • Pozzo M., Davies C., Gubbins D., Alfe D. Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions // Phys. Rev. B. V. 87. 014110. 2013.

    Google Scholar 

  • Reynolds O. On the dynamical theory of incompressible viscous fluids and determination of the criterion // Roy. Soc. London. V. 186. P. 123–161. 1894.

    Google Scholar 

  • Ruzmaikin A.A., Starchenko S.V. Generation of the large-scale magnetic fields of Uranus and Neptune by turbulent dynamo // Kosmicheskie issledovaniya. V. 27. P. 297–303. 1989.

    Google Scholar 

  • Ruzmaikin A.A., Starchenko S.V. On the origin of Uranus and Neptune magnetic fields // Icarus. V. 93. P. 82–87. 1991.

    Google Scholar 

  • Schubert G., Soderlund K.M. Planetary magnetic fields: Observations and models // Phys. Earth Planet. Inter. V. 187. P. 92–108. 2011.

    Google Scholar 

  • Smagorinsky J. General circulation experiments with the primitive equations I. The basic experiments // Monthly Weather Review. V. 91. No. 3. P. 99–164. 1963.

    Google Scholar 

  • Starchenko S.V. Generation of nonaxisymmetric magnetic structures in galaxies, the Sun, and planets // Astronomy Reports. V. 72. No 2. P. 257–262. 1995.

    Google Scholar 

  • Starchenko S.V., Kotelnikova M.S., Maslov I.V. Marginal stability of almost adiabatic planetary convection // Geophys. Astrophys. Fluid Dyn. V. 100. P. 397–428. 2006.

    Google Scholar 

  • Starchenko S.V. Analytic base of geodynamo-like scaling laws in the planets, geomagnetic periodicities and inversions // Geomagnetism and Aeronomy. V. 54. No 6. P. 694–701. 2014.

    Google Scholar 

  • Starchenko S.V., Observational estimate of magnetic field and geodynamo parameters under the surface of the Earth’s core // Geomagnetism and Aeronomy. V. 55. No 5. P. 712–718. 2015.

    Google Scholar 

  • Starchenko S.V. Hypothetical parameters of planetary dynamos deduced from direct observations, scaling laws, paleomagnetic and isotope reconstructions // Proceedings of the 11th International School and Conference “Problems of Geocosmos” (Oct. 03–07, 2016, St. Petersburg, Russia), edited by V.S. Semenov et al. P. 64–72. 2016.

    Google Scholar 

  • Starchenko S.V. Scaling and excitation of combined convection in a rapidly rotating plane layer // (JETP) Zh. Eksp. Teor. Fiz. V. 124. No. 2. P. 352–357. 2017a.

    Google Scholar 

  • Starchenko S.V. Energy geodynamo parameters compatible with analytical, numerical, paleomagnetic models and observations // Fizika Zemli. No. 6. P. 110–124. 2017b.

    Google Scholar 

  • Starchenko S.V., Jones C.A. Typical velocities and magnetic field strengths in planetary interiors // Icarus. V. 157. P. 426–435. 2002.

    Google Scholar 

  • Starchenko S.V., Kotelnikova M.S. Critical stability of almost adiabatic convection in fast rotating and wide spherical shell. JETP (Zh. Eksp. Teor. Fiz.). V. 143. 2. P. 388–396. 2013a.

    Google Scholar 

  • Starchenko S.V., Pushkarev Y.D. Magnetohydrodynamic scaling of geodynamo and a planetary protocore concept // Magnetohydrodynamics. V. 49. No. 1. P. 35–42. 2013b.

    Google Scholar 

  • Tarduno J.A., Cottrell R.D., Davis W.J., Nimmo F., Bono R.K.. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals // Science. V. 349. No. 6247. P. 521–524. 2015.

    Google Scholar 

  • Terasaki H., Fischer R.A. Physics and Chemistry of the Lower Mantle and Core. John Wiley & Sons. pp. 312. 2016.

    Google Scholar 

  • Yadav R. K., Gastine T., Christensen U. R. Scaling laws in spherical shell dynamos with free-slip boundaries. Icarus. V. 225(1). P. 185–193. 2013.

    Google Scholar 

Download references

Acknowledgements

Author is deeply grateful to the anonymous reviewer and to Prof. Dmitry Sokoloff for their constructive criticism that resulted in sufficient improving of this work. This work was basically done under IZMIRAN budget. The work was also partly supported by the Russian Foundation for Basic Research (project no. 16-05-00507a) and 28th program of the presidium of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Starchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starchenko, S.V. (2019). Simple Estimations for Planetary Convection Turbulence and Dynamo Magnetism from Optimized Scaling and Observations. In: Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S. (eds) Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-90437-5_34

Download citation

Publish with us

Policies and ethics