Advertisement

Adjustment of Capabilities: How to Add Dynamics

  • Jānis GrabisEmail author
  • Jānis Kampars
Chapter

Abstract

Capabilities are delivered in ever-changing contextual situations. To respond to this challenge, the purpose of capability delivery adjustments is to alter capability delivery in response to the changing context and delivery performance without the need for redesigning the capability and the capability delivery application (CDA). More specifically, this chapter will present how the run-time delivery adjustment methodology supports this by (1) enabling specification of complex contextual data processing logics, (2) providing reconfigurable data bindings, and (3) separating contextual dependencies from business logic. The adjustments provide a uniform way of defining computations associated with the concepts defined in the capability model and primarily of those associated with context elements and indicators. These computations can be specified by a capability designer, and they are decoupled from the rest of capability delivery logics. This principle allows to make changes in context processing without changing the rest of the capability delivery application. Algorithms for context-aware capability delivery adjustment are defined as capability adjustments and provide decision-making logics for capability delivery variation points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bērziša, S., Bravos, G., González, T., Czubayko, U., España, S., Grabis, J., Henkel, M., Jokste, L., Kampars, J., Koç, H., Kuhr, J., Llorca, C., Loucopoulos, P., Pascual, R.J., Pastor, O., Sandkuhl, K., Simic, H., Stirna, J., Giromé, F.V., Zdravkovic, J.: Capability driven development: an approach to designing digital enterprises. Bus. Inf. Syst. Eng. 57, 15–25 (2015)CrossRefGoogle Scholar
  2. 2.
    Grabis, J., Kampars, J.: Design of capability delivery adjustments. In: 28th Conference on Advanced Information Systems Engineering, CAiSE 2016 held in conjunction with ASDENCA. LNBIP, vol. 249, pp. 52–62. Springer, Heidelberg (2016)Google Scholar
  3. 3.
    Grabis, J., Kampars, J., Bondars, Ž., Dobelis, Ē.: Design of vehicle routing capability. In: ASDENCA 2017, 29th International Conference on Advanced Information Systems Engineering, CAiSE 2017. LNBIP, vol. 286, pp. 3–13. Springer, Heidelberg (2017)Google Scholar
  4. 4.
    Braekers, K., Ramaekers, K., van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016)CrossRefGoogle Scholar
  5. 5.
    Kallehauge, B., Larsen, J., Madsen, O.B.G., Solomon, M.M.: Vehicle routing problem with time windows. In: Desaulniers, G., et al. (eds.) Column Generation, pp. 67–98. Springer, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36, 41–50+4 (2003)Google Scholar
  7. 7.
    Heylighen, F.: Web dictionary of cybernetics and systems. Principia Cybernetica Web (2004). http://pespmc1.vub.ac.be
  8. 8.
    De Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T., Weyns, D., Baresi, L., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Göschka, K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer, W., Schlichting, R., Smith, D.B., Sousa, J.P., Tahvildari, L., Wong, K., Wuttke, J.: Software engineering for self-adaptive systems: a second research roadmap. In: De Lemos, R., et al. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Weyns, D., Ahmad, T.: Claims and evidence for architecture-based self-adaptation: a systematic literature review. In: Proceedings of the 7th European conference on Software Architecture. LNCS, vol. 7957, pp. 249–265. Springer, Heidelberg (2013)Google Scholar
  10. 10.
    Andersson, J., Baresi, L., Bencomo, N., De Lemos, R., Gorla, A., Inverardi, P., Vogel, T.: Software engineering processes for self-adaptive systems. In: De Lemos, R., et al. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Eddin, M.C.: Towards a taxonomy of dynamic reconfiguration approaches. J. Softw. 8(9), 2202–2207 (2013)CrossRefGoogle Scholar
  12. 12.
    Mori, M.: A software lifecycle process for context-aware adaptive systems. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, pp. 412–415 (2011)Google Scholar
  13. 13.
    Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework, approaches, and styles. In: Proceedings of ICSE Companion ‘08, Companion of the 30th International Conference on Software Engineering, pp. 899–910 (2008)Google Scholar
  14. 14.
    Montani, S., Leonardi, G.: Retrieval and clustering for supporting business Process adjustment and analysis. Inf. Syst. 40, 128–141 (2014)CrossRefGoogle Scholar
  15. 15.
    Liaskos, S., Khan, S.M., Litoiu, M., Jungblut, M.D., Rogozhkin, V., Mylopoulos, J.: Behavioral adaptation of information systems through goal models. Inf. Syst. 37, 767–783 (2012)CrossRefGoogle Scholar
  16. 16.
    Muller, R., Greiner, U., Rahm, E.: AGENTWORK: a workflow system supporting rule-based workflow adaptation. Data Knowl. Eng. 51, 223–256 (2004)CrossRefGoogle Scholar
  17. 17.
    Alférez, G.H., Pelechano, V., Mazo, R., Salinesi, C., Diaz, D.: Dynamic adaptation of service compositions with variability models. J. Syst. Softw. 91, 24–47 (2014)CrossRefGoogle Scholar
  18. 18.
    Döhring, M., Reijers, H.A., Smirnov, S.: Configuration vs. adaptation for business process variant maintenance: an empirical study. Inf. Syst. 39, 108–133 (2014)CrossRefGoogle Scholar
  19. 19.
    Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the Provop approach. J. Softw. Maint. Evol. 22(6–7), 519–546 (2010)Google Scholar
  20. 20.
    Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Proceedings of the 1st International Symposium on Handheld and Ubiquitous Computing, ser. HUC ’99. LNCS, vol. 1707, pp. 304–307. Springer, London (1999)Google Scholar
  21. 21.
    Smanchat, S., Ling, S., Indrawan, M.: A survey on context-aware workflow adaptations. In: Kotsis, G., Taniar, D., Pardede, E., Khalil, I. (eds.) Proceedings of the 6th International Conference on Advances in Mobile Computing and Multimedia (MoMM ’08), pp. 414–417. ACM, New York, NY.  https://doi.org/10.1145/1497185.1497274

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Information Technology, Faculty of Computer Science and Information TechnologyRiga Technical UniversityRigaLatvia

Personalised recommendations