Skip to main content

Variability Management in Safety-Critical Software Product Line Engineering

  • Conference paper
  • First Online:
Book cover New Opportunities for Software Reuse (ICSR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10826))

Included in the following conference series:

Abstract

Safety-critical systems developed upon SPLE approach have to address safety standards, which establish guidance for analyzing and demonstrating dependability properties of the system at different levels of abstraction. However, the adoption of an SPLE approach for developing safety-critical systems demands the integration of safety engineering into SPLE processes. Thus, variability management in both system design and dependability analysis should be considered through SPLE life-cycle. Variation in design and context may impact on dependability properties during Hazard Analysis and Risk Assessment (HARA), allocation of functional and non-functional safety requirements, and component fault analysis. This paper presents DEPendable-SPLE, a model-based approach that extends traditional SPLE methods, to support variability modeling/management in dependability analysis. The approach is illustrated in a case study from the aerospace domain. As a result, the approach enabled efficient management of the impact of design and context variations on HARA and component fault modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Big Lever: Gears (2016). http://www.biglever.com

  2. Braga, R.T.V., Trindade Jr., O., Branco, K.R.L.J.C., Lee, J.: Incorporating certification in feature modelling of an unmanned aerial vehicle product line. In: Proceedings of the 16th SPLC, pp. 1–10 (2012)

    Google Scholar 

  3. Braga, R.T.V., Trindade Jr., O., Castelo Branco, K.R., Neris, L.D.O., Lee, J.: Adapting a software product line engineering process for certifying safety critical embedded systems. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 352–363. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33678-2_30

    Chapter  Google Scholar 

  4. Braga, R.T.V., Branco, K.R.L.J.C., Trindade Jr., O., Masiero, P.C.: The ProLiCES approach to develop product lines for safety-critical embedded system and its application to the unmanned aerial vehicles domain. CLEI Electron. J. 15(2), 1–12 (2012)

    Google Scholar 

  5. Dehlinger, J., Lutz, R.: Software fault tree analysis for product lines. In: Proceedings of the 8th IEEE HASE, USA (2004)

    Google Scholar 

  6. Delange, J., Feiler, P.: Architecture fault modeling with the AADL error-model annex. In: Proceedings of the 40th EUROMICRO, Verona, pp. 361–368 (2014)

    Google Scholar 

  7. Domis, D., Adler, R. Becker, M.: Integrating variability and safety analysis models using commercial UML-based tools. In: Proceedings of the 19th SPLC, pp. 225–234. ACM, New York (2015)

    Google Scholar 

  8. Dordowsky, F., Bridges, R., Tschope, H.: Implementing a software product line for a complex avionics system. In: Proceedings of the 15th International SPLC, pp. 241–250. IEEE (2011)

    Google Scholar 

  9. ECLIPSE: Eclipse modeling framework project (2016). http://www.eclipse.org/modeling/emf

  10. EUROCAE: ARP4754A - guidelines for development of civil aircraft and systems. EUROCAE (2010)

    Google Scholar 

  11. EUROCAE: Aircraft wheel braking system. https://github.com/osate/examples/tree/master/ARP4761

  12. Feng, Q., Lutz, R.: Bi-directional safety analysis of product lines. J. Syst. Softw. 78(2), 111–127 (2005)

    Article  Google Scholar 

  13. Gómez, C., Liggesmeyer, P., Sutor, A.: Variability management of safety and reliability models: an intermediate model towards systematic reuse of component fault trees. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 28–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15651-9_3

    Chapter  Google Scholar 

  14. Habli, I., Kelly, T., Hopkins, I.: Challenges of establishing a software product line for an aerospace engine monitoring system. In: Proceedings of the 11th SPLC, Japan, pp. 193–202. IEEE (2007)

    Google Scholar 

  15. Haugen, O., Moller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding standardized variability to domain specific languages. In: Proceedings of the 12th International Software Product Line Conference, pp. 139–148. IEEE (2008)

    Google Scholar 

  16. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving an assurance case from design: a model-based approach. In: Proceedings of the 16th HASE, Daytona Beach, pp. 110–117. IEEE (2015)

    Google Scholar 

  17. Heuer, A., Pohl, K.: Structuring variability in the context of embedded systems during software engineering. In: Proceedings of the 8th Workshop on Variability Modelling of Software-Intensive Systems. ACM (2014)

    Google Scholar 

  18. ISO: ISO 26262: road vehicles functional safety (2011)

    Google Scholar 

  19. Kang, K.C., Kim, S., Lee, J., Kim, K., Jounghyun Kim, G., Shin, E.: Form: a feature-oriented reuse method with domain-specific reference architectures. Ann. Softw. Eng. 5, 143–168 (1998)

    Article  Google Scholar 

  20. Käßmeyer, M., Schulze, M., Schurius, M.: A process to support a systematic change impact analysis of variability and safety in automotive functions. In: Proceedings of the 19th SPLC, pp. 235–244. ACM, New York (2015)

    Google Scholar 

  21. Käßmeyer, M., Moncada, D.S.V., Schurius, M.: Evaluation of a systematic approach in variant management for safety-critical systems development. In: Proceedings of the 13th International Conference Embedded and Ubiquitous Computing, pp. 35–43. IEEE (2015)

    Google Scholar 

  22. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns. In: Daniel, P. (ed.) Safe Comp 97, pp. 55–69. Springer, London (1997). https://doi.org/10.1007/978-1-4471-0997-6_5

    Chapter  Google Scholar 

  23. Krueger, C.: Variation management for software production lines. In: Proceedings of the 2nd SPLC, vol. 2379, pp. 37–48 (2002)

    Chapter  MATH  Google Scholar 

  24. Lee, K., Kang, K.C.: Usage context as key driver for feature selection. In: Proceedings of the 14th SPLC, vol. 6287, pp. 32–46 (2010)

    Chapter  Google Scholar 

  25. Leveson, N.: Door control system. https://github.com/osate/examples/tree/master/Train

  26. Liu, J., Dehlinger, J., Lutz, R.: Safety analysis of software product lines using stated modeling. J. Syst. Softw. 80(11), 1879–1892 (2007)

    Article  Google Scholar 

  27. Mazzini, S., Favaro, J., Puri, S., Baracchi, L.: CHESS: an open source methodology and toolset for the development of critical systems. In: Join Proceedings of EduSymp, pp. 59–66 (2016)

    Google Scholar 

  28. Oliveira, A.L., Braga, R., Masiero, P.C., Papadopoulos, Y., Habli, I., Kelly, T.: Model-based safety analysis of software product lines. Int. J. Embed. Syst. 8, 412–426 (2016)

    Article  Google Scholar 

  29. Oliveira, A.L., Braga, R.T.B., Masiero, P.C., Papadopoulos, Y., Habli, I., Kelly, T.: A model-based approach to support the automatic safety analysis of multiple product line products. In: Proceedings of the 4th Brazilian Symposium on Computing Systems Engineering, Brazil, pp. 7–12. IEEE (2014)

    Google Scholar 

  30. Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R.: Engineering failure analysis and design optimization with HIP-HOPS. J. Eng. Fail. Anal. 18(2), 590–608 (2011)

    Article  Google Scholar 

  31. RTCA: DO-178C software considerations in airborne systems and equipment certification (2012)

    Google Scholar 

  32. Schulze, M., Mauersberger, J., Beuche, D.: Functional safety and variability: can it be brought together? In: Proceedings of the 17th International SPLC, pp. 236–243. ACM, New York (2013)

    Google Scholar 

  33. Steiner, E.M., Masiero, P.C., Bonifácio, R.: Managing SPL variabilities in UAV Simulink models with Pure: variants and Hephaestus. CLEI Electron. J. 16(1), 1–16 (2013)

    Google Scholar 

  34. Vasilevskiy, A., Haugen, Ø., Chauvel, F., Johansen, M.F., Shimbara, D.: The BVR tool bundle to support product line engineering. In: Proceedings of the 19th International Software Product Line Conference, pp. 380–384. ACM, New York (2015)

    Google Scholar 

Download references

Acknowledgments

CNPq grant number: 152693-2011-4, and CAPES research agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Oliveira, A.L., Braga, R.T.V., Masiero, P.C., Papadopoulos, Y., Habli, I., Kelly, T. (2018). Variability Management in Safety-Critical Software Product Line Engineering. In: Capilla, R., Gallina, B., Cetina, C. (eds) New Opportunities for Software Reuse. ICSR 2018. Lecture Notes in Computer Science(), vol 10826. Springer, Cham. https://doi.org/10.1007/978-3-319-90421-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90421-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90420-7

  • Online ISBN: 978-3-319-90421-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics