Skip to main content

Structural Health Monitoring Using Machine Learning Techniques and Domain Knowledge Based Features

  • Chapter
  • First Online:
Human and Machine Learning

Abstract

Structural Health Monitoring (SHM) is a condition-based maintenance technology using sensing systems. In SHM, the use of domain knowledge is essential: it motivates the use of machine learning approaches; it can be used to extract damage sensitive features and interpret the results by machine learning. This work focuses on two SHM problems: damage identification and substructure clustering. Our solutions to address them are based on machine learning techniques and robust feature extraction using domain knowledge. In the first problem, damage sensitive features were extracted using a frequency domain decomposition, followed by a robust one-class support vector machine for damage detection. In the second problem, a novel clustering technique and spectral moment feature were utilised for substructure grouping and anomaly detection. These methods were evaluated using data from lab-based structures and data collected from the Sydney Harbour Bridge. We obtained high damage detection accuracies and were able to assess damage severity. Furthermore, the clustering technique was able to group substructures of similar behaviour and detect spatial anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

    Article  MathSciNet  Google Scholar 

  2. Alamdari, M.M., Li, J., Samali, B.: Frf-based damage localization method with noise suppression approach. J. Sound Vib. 333(14), 3305–3320 (2014)

    Article  Google Scholar 

  3. Alamdari, M.M., Rakotoarivelo, T., Khoa, N.L.D.: A spectral-based clustering for structural health monitoring of the Sydney Harbour Bridge. Mech. Syst. Signal Process. 87, 384–400 (2017)

    Article  Google Scholar 

  4. Anaissi, A., Khoa, N.L.D., Mustapha, S., Alamdari, M.M., Braytee, A., Wang, Y., Chen, F.: Adaptive one-class support vector machine for damage detection in structural health monitoring. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 42–57. Springer (2017)

    Chapter  Google Scholar 

  5. Antoni, J., Randall, R.: The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mech. Syst. Signal Process. 20(2), 308–331 (2006)

    Article  Google Scholar 

  6. Arthur, D., Vassilvitskii, S.: K-means++: The advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07. Society for Industrial and Applied Mathematics, pp. 1027–1035. Philadelphia, PA, USA (2007)

    Google Scholar 

  7. Banks, H., Inman, D., Leo, D., Wang, Y.: An experimentally validated damage detection theory in smart structures. J. Sound Vib. 191(5), 859–880 (1996)

    Article  Google Scholar 

  8. Benasciutti, D., Cristofori, A., Tovo, R.: Analogies between spectral methods and multiaxial criteria in fatigue damage evaluation. Probab. Eng. Mech. 31, 39–45 (2013)

    Article  Google Scholar 

  9. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, pp. 245–250. ACM, New York, NY, USA (2001). DOI https://doi.org/10.1145/502512.502546

  10. Brincker, R., Zhang, L., Andersen, P.: Output-only modal analysis by frequency domain decomposition. In: The International Conference on Noise and Vibration Engineering, pp. 717–723 (2001)

    Google Scholar 

  11. Cattarius, J., Inman, D.: Time domain analysis for damage detection in smart structures. Mech. Syst. Signal Process. 11(3), 409–423 (1997)

    Article  Google Scholar 

  12. Chawla, S., Gionis, A.: k-means-: A unified approach to clustering and outlier detection. In: Proceedings of the 13th SIAM International Conference on Data Mining, 2–4 May 2013. Austin, Texas, USA, pp. 189–197 (2013)

    Chapter  Google Scholar 

  13. Chen, Y., Zhou, X.S., Huang, T.S.: One-class svm for learning in image retrieval. In: 2001 International Conference on Image Processing, vol. 1, pp. 34–37. IEEE (2001)

    Google Scholar 

  14. Curadelli, R., Riera, J., Ambrosini, D., Amani, M.: Damage detection by means of structural damping identification. Eng. Struct. 30(12), 3497–3504 (2008)

    Article  Google Scholar 

  15. CusidÓCusido, J., Romeral, L., Ortega, J.A., Rosero, J.A., Espinosa, A.G.: Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Trans. Ind. Electron. 55(2), 633–643 (2008)

    Article  Google Scholar 

  16. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

  17. Di-Paola, M., Muscolino, G.: On the convergent parts of high order spectral moments of stationary structural responses. J. Sound Vib. 110, 233–245 (1986)

    Article  Google Scholar 

  18. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Technical report. Los Alamos National Laboratory, NM, USA (1996)

    Google Scholar 

  19. Dunn, J.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973)

    Article  MathSciNet  Google Scholar 

  20. Farrar, C.R., Doebling, S.W., Nix, D.A.: Vibration-based structural damage identification. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 359(1778), 131–149 (2001)

    Article  Google Scholar 

  21. Farrar, C.R., Worden, K.: An introduction to structural health monitoring. In: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 303–315. The Royal Society (2007)

    Article  Google Scholar 

  22. Fugate, M.L., Sohn, H., Farrar, C.R.: Vibration-based damage detection using statistical process control. Mech. Syst. Signal Process. 15(4), 707–721 (2001)

    Article  Google Scholar 

  23. Hou, Z., Noori, M., Amand, R.S.: Wavelet-based approach for structural damage detection. J. Eng. Mech. 126(7), 677–683 (2000)

    Article  Google Scholar 

  24. H.Sohn, Farrar, C., Hemez, F., Shunk, D., Stinemates, D., Nadler, B., Czarnecki, J.: A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory, USA (2003)

    Google Scholar 

  25. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

  26. Jiang, S.F., Zhang, C.M., Koh, C.: Structural damage detection by integrating data fusion and probabilistic neural network. Adv. Struct. Eng. 9(4), 445–458 (2006)

    Article  Google Scholar 

  27. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: European Conference on Machine Learning, pp. 137–142. Springer (1998)

    Chapter  Google Scholar 

  28. Johnson, W.B., Lindenstrauss, J.: Extensions of lipschitz mappings into a hilbert space. Contem. Math. 26(189–206), 1 (1984)

    MathSciNet  MATH  Google Scholar 

  29. Jolliffe, I.: Principal component analysis. Wiley Online Library (2002)

    Google Scholar 

  30. Kemmler, M., Rodner, E., Denzler, J.: One-class classification with gaussian processes. In: Asian Conference on Computer Vision, pp. 489–500. Springer (2010)

    Chapter  Google Scholar 

  31. Khoa, N.L.D., Zhang, B., Wang, Y., Chen, F., Mustapha, S.: Robust dimensionality reduction and damage detection approaches in structural health monitoring. Struct. Health Monit. 13(4), 406–417 (2014)

    Article  Google Scholar 

  32. Law, S., Li, X., Zhu, X., Chan, S.: Structural damage detection from wavelet packet sensitivity. Eng. Struct. 27(9), 1339–1348 (2005)

    Article  Google Scholar 

  33. Lee, U., Shin, J.: A frequency response function-based structural damage identification method. Comput. & Struct. 80(2), 117–132 (2002)

    Article  Google Scholar 

  34. Liberatore, S., Carman, G.: Power spectral density analysis for damage identification and location. J. Sound Vib. 274(3), 761–776 (2004)

    Article  Google Scholar 

  35. Liu, Q.C., Wang, H.P.B.: A case study on multisensor data fusion for imbalance diagnosis of rotating machinery. AI EDAM 15(3), 203–210 (2001)

    MATH  Google Scholar 

  36. Long, J., Buyukozturk, O.: Automated structural damage detection using one-class machine learning. In: Dynamics of Civil Structures, Vol. 4, pp. 117–128. Springer (2014)

    Chapter  Google Scholar 

  37. Lu, Y., Michaels, J.E.: Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions. IEEE Sens. J. 9(11), 1462–1471 (2009)

    Article  Google Scholar 

  38. Maia, N., Silva, J., Almas, E., Sampaio, R.: Damage detection in structures: from mode shape to frequency response function methods. Mech. Syst. Signal Process. 17(3), 489–498 (2003)

    Article  Google Scholar 

  39. Makki Alamdari, M.: Vibration-based structural health monitoring. Ph.D. thesis, University of Technology Sydney (2015)

    Google Scholar 

  40. Makki-Alamdari, M., Li, J., Samali, B.: A comparative study on the performance of the damage detection methods in the frequency domain. In: Australasian Conference on the Mechanics of Structures and Materials. CRC press/Balkema (2013)

    Chapter  Google Scholar 

  41. Makki Alamdari, M., Samali, B., Li, J., Kalhori, H., Mustapha, S.: Spectral-based damage identification in structures under ambient vibration. J. Comput. Civil Eng. p. 04015062 (2015)

    Article  Google Scholar 

  42. Mustapha, S., Hu, Y., Nguyen, K., Alamdari, M.M., Runcie, P., Dackermann, U., Nguyen, V., Li, J., Ye, L.: Pattern recognition based on time series analysis using vibration data for structural health monitoring in civil structures. Special Issue: Electron. J. Struct. Eng. 14(1) (2015)

    Google Scholar 

  43. Nagarajaiah, S., Basu, B.: Output only modal identification and structural damage detection using time frequency & wavelet techniques. Earthquake Eng. Eng. Vib. 8(4), 583–605 (2009)

    Article  Google Scholar 

  44. Pandey, A., Biswas, M.: Damage detection in structures using changes in flexibility. J. Sound Vib. 169(1), 3–17 (1994)

    Article  Google Scholar 

  45. Peeters, B., Maeck, J., De Roeck, G.: Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Mater. Struct. 10(3), 518 (2001)

    Article  Google Scholar 

  46. Petrucci, G., Zuccarello, B.: Fatigue life prediction under wide band random loading. Fatigue & Fract. Eng. Mater. Struct. 27(12), 1183–1195 (2004)

    Article  Google Scholar 

  47. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  48. Runcie, P., Mustapha, S., Rakotoarivelo, T.: Advances in structural health monitoring system architecture. In: International Symposium on Life-Cycle Civil Engineering, pp. 1064 –1071 (2014)

    Google Scholar 

  49. Rytter, A.: Vibration-based inspection of civil engineering structures. Ph.D. thesis, University of Aalborg (1993)

    Google Scholar 

  50. Salawu, O.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)

    Article  Google Scholar 

  51. Santos, A., Figueiredo, E., Silva, M., Sales, C., Costa, J.: Machine learning algorithms for damage detection: Kernel-based approaches. J. Sound Vib. 363, 584–599 (2016)

    Article  Google Scholar 

  52. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C., et al.: Support vector method for novelty detection. In: NIPS, vol. 12, pp. 582–588. Citeseer (1999)

    Google Scholar 

  53. Shi, Z., Law, S., Zhang, L.: Structural damage detection from modal strain energy change. J. Eng. Mech. 126(12), 1216–1223 (2000)

    Article  Google Scholar 

  54. Sohn, H., Farrar, C.R.: Damage diagnosis using time series analysis of vibration signals. Smart Mater. Struct. 10(3), 446 (2001)

    Article  Google Scholar 

  55. Sohn, H., Farrar, C.R., Hemez, F.M., Czarnecki, J.J.: A review of structural health review of structural health monitoring literature 1996–2001. Technical Report, Los Alamos National Laboratory (2002)

    Google Scholar 

  56. Sophian, A., Tian, G.Y., Taylor, D., Rudlin, J.: A feature extraction technique based on principal component analysis for pulsed eddy current ndt. NDT & e Int. 36(1), 37–41 (2003)

    Article  Google Scholar 

  57. Su, Z., Wang, X., Cheng, L., Yu, L., Chen, Z.: On selection of data fusion schemes for structural damage evaluation. Struct. Health Monit. 8(3), 223–241 (2009)

    Article  Google Scholar 

  58. Sun, Z., Chang, C.: Structural damage assessment based on wavelet packet transform. J. Struct. Eng. 128(10), 1354–1361 (2002)

    Article  Google Scholar 

  59. Sunder, S.S., Grewatz, S.E., Ting, S.K.: Modal identification using spectral moments. Struct. Saf. 3(1), 1–11 (1985)

    Article  Google Scholar 

  60. Vanmarcke, E.H.: Properties of spectral moments with applications to random vibration. J. Eng. Mech. Div. 98(2), 425–446 (1972)

    Google Scholar 

  61. Venkatasubramanian, S., Wang, Q.: The johnson-lindenstrauss transform: An empirical study. In: M. Mller-Hannemann, R.F.F. Werneck (eds.) ALENEX, pp. 164–173. SIAM (2011)

    Chapter  Google Scholar 

  62. Worden, K., Manson, G.: The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 365(1851), 515–537 (2007)

    Article  Google Scholar 

  63. Yao, R., Pakzad, S.N.: Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mech. Syst. Signal Process. 31, 355–368 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Roads and Maritime Services (RMS) in New South Wales, Australia for provision of the support and testing facilities for this research work. NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program. CSIRO’s Digital Productivity business unit and NICTA have joined forces to create digital powerhouse Data61.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Lu Dang Khoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khoa, N.L.D., Makki Alamdari, M., Rakotoarivelo, T., Anaissi, A., Wang, Y. (2018). Structural Health Monitoring Using Machine Learning Techniques and Domain Knowledge Based Features. In: Zhou, J., Chen, F. (eds) Human and Machine Learning. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-90403-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90403-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90402-3

  • Online ISBN: 978-3-319-90403-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics