Skip to main content

Group Cognition and Collaborative AI

  • Chapter
  • First Online:
Human and Machine Learning

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

Significant advances in artificial intelligence suggest that we will be using intelligent agents on a regular basis in the near future. This chapter discusses group cognition as a principle for designing collaborative AI. Group cognition is the ability to relate to other group members’ decisions, abilities, and beliefs. It thereby allows participants to adapt their understanding and actions to reach common objectives. Hence, it underpins collaboration. We review two concepts in the context of group cognition that could inform the development of AI and automation in pursuit of natural collaboration with humans: conversational grounding and theory of mind. These concepts are somewhat different from those already discussed in AI research. We outline some new implications for collaborative AI, aimed at extending skills and solution spaces and at improving joint cognitive and creative capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the twenty-first international conference on Machine learning, p. 1. ACM (2004)

    Google Scholar 

  2. Abrams, D., Rutland, A., Palmer, S.B., Pelletier, J., Ferrell, J., Lee, S.: The role of cognitive abilities in children’s inferences about social atypicality and peer exclusion and inclusion in intergroup contexts. Br. J. Dev. Psychol. 32(3), 233–247 (2014)

    Article  Google Scholar 

  3. Akkerman, S., Van den Bossche, P., Admiraal, W., Gijselaers, W., Segers, M., Simons, R.J., Kirschner, P.: Reconsidering group cognition: from conceptual confusion to a boundary area between cognitive and socio-cultural perspectives? Educ. Res. Rev. 2(1), 39–63 (2007)

    Article  Google Scholar 

  4. Alexakos, C., Kalogeras, A.P.: Internet of things integration to a multi agent system based manufacturing environment. In: 2015 IEEE 20th Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2015)

    Google Scholar 

  5. Allen, J., Guinn, C.I., Horvitz, E.: Mixed-initiative interaction. IEEE Intell. Syst. Appl. 14(5), 14–23 (1999)

    Article  Google Scholar 

  6. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  7. Baker, M.J.: Collaboration in collaborative learning. Interact. Stud. 16(3), 451–473 (2015)

    Article  Google Scholar 

  8. Baker, M., Hansen, T., Joiner, R., Traum, D.: The role of grounding in collaborative learning tasks. Collab. Learn. Cogn. Comput. Approach. 31, 63 (1999)

    Google Scholar 

  9. Bradáč, V., Kostolányová, K.: Intelligent tutoring systems. In: E-Learning, E-Education, and Online Training: Third International Conference, eLEOT 2016, Dublin, Ireland, August 31–September 2, 2016, Revised Selected Papers, pp. 71–78. Springer (2017)

    Google Scholar 

  10. Cai, Z., Wu, Q., Huang, D., Ding, L., Yu, B., Law, R., Huang, J., Fu, S.: Cognitive state recognition using wavelet singular entropy and arma entropy with afpa optimized gp classification. Neurocomputing 197, 29–44 (2016)

    Article  Google Scholar 

  11. Cambria, E., White, B.: Jumping nlp curves: a review of natural language processing research. IEEE Comput. Intell. Mag. 9(2), 48–57 (2014)

    Article  Google Scholar 

  12. Campbell, A., Wu, A.S.: Multi-agent role allocation: issues, approaches, and multiple perspectives. Auton. Agent. Multi-Agent Syst. 22(2), 317–355 (2011)

    Article  Google Scholar 

  13. Cannon-Bowers, J.A., Salas, E.: Reflections on shared cognition. J. Organ. Behav. 22(2), 195–202 (2001)

    Article  Google Scholar 

  14. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730. ACM (2015)

    Google Scholar 

  15. Chandrasekaran, A., Yadav, D., Chattopadhyay, P., Prabhu, V., Parikh, D.: It takes two to tango: towards theory of ai’s mind (2017). arXiv:1704.00717

  16. Chau, D.H., Kittur, A., Hong, J.I., Faloutsos, C.: Apolo: making sense of large network data by combining rich user interaction and machine learning. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 167–176. ACM (2011)

    Google Scholar 

  17. Cheng, J., Greiner, R.: Learning bayesian belief network classifiers: algorithms and system. In: Advances in artificial intelligence, pp. 141–151 (2001)

    Chapter  Google Scholar 

  18. Chrislip, D.D., Larson, C.E.: Collaborative leadership: how citizens and civic leaders can make a difference, vol. 24. Jossey-Bass Inc Pub (1994)

    Google Scholar 

  19. Clark, H.H., Wilkes-Gibbs, D.: Referring as a collaborative process. Cognition 22(1), 1–39 (1986)

    Article  Google Scholar 

  20. Clark, H.H., Brennan, S.E., et al.: Grounding in communication. Perspect. Soc. Shar. Cogn. 13(1991), 127–149 (1991)

    Google Scholar 

  21. Cohen, P.R., Perrault, C.R.: Elements of a plan-based theory of speech acts. Cogn. Sci. 3(3), 177–212 (1979)

    Article  Google Scholar 

  22. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  23. Dartnall, T.: Artificial intelligence and creativity: an interdisciplinary approach, vol. 17. Springer Science & Business Media (2013)

    Google Scholar 

  24. de Haan, M.: Intersubjectivity in models of learning and teaching: reflections from a study of teaching and learning in a mexican mazahua community. In: The theory and practice of cultural-historical psychology, pp. 174–199 (2001)

    Google Scholar 

  25. De Jong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Mach. Learn. 13(2–3), 161–188 (1993)

    Google Scholar 

  26. Deterding, C.S., Hook, J.D., Fiebrink, R., Gow, J., Akten, M., Smith, G., Liapis, A., Compton, K.: Mixed-initiative creative interfaces (2017)

    Google Scholar 

  27. Dresner, K., Stone, P.: A multiagent approach to autonomous intersection management. J. Artif. Intell. Res. 31, 591–656 (2008)

    Google Scholar 

  28. El Kaliouby, R., Robinson, P.: Mind reading machines: automated inference of cognitive mental states from video. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 682–688. IEEE (2004)

    Google Scholar 

  29. El Kaliouby, R., Robinson, P.: Real-time inference of complex mental states from facial expressions and head gestures. In: Real-Time Vision for Human-Computer Interaction, pp. 181–200. Springer (2005)

    Google Scholar 

  30. Emojis as content within chatbots and nlps (2016). https://www.smalltalk.ai/blog/2016/12/9/how-to-use-emojis-as-content-within-chatbots-and-nlps

  31. Engel, D., Woolley, A.W., Jing, L.X., Chabris, C.F., Malone, T.W.: Reading the mind in the eyes or reading between the lines? Theory of mind predicts collective intelligence equally well online and face-to-face. PloS one 9(12), e115,212 (2014)

    Article  Google Scholar 

  32. Flavell, J.H.: Theory-of-mind development: retrospect and prospect. Merrill-Palmer Q. 50(3), 274–290 (2004)

    Article  Google Scholar 

  33. Fotheringham, M.J., Owies, D., Leslie, E., Owen, N.: Interactive health communication in preventive medicine: internet-based strategies in teaching and research. Am. J. Prev. Med. 19(2), 113–120 (2000)

    Article  Google Scholar 

  34. Fussell, S.R., Kiesler, S., Setlock, L.D., Yew, V.: How people anthropomorphize robots. In: 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 145–152. IEEE (2008)

    Google Scholar 

  35. Galegher, J., Kraut, R.E., Egido, C.: Intellectual Teamwork: Social and Technological Foundations of Cooperative Work. Psychology Press (2014)

    Google Scholar 

  36. Goldstone, R.L., Theiner, G.: The multiple, interacting levels of cognitive systems (milcs) perspective on group cognition. Philos. Psychol. 30(3), 334–368 (2017)

    Article  Google Scholar 

  37. Graesser, A.C., VanLehn, K., Rosé, C.P., Jordan, P.W., Harter, D.: Intelligent tutoring systems with conversational dialogue. AI Mag. 22(4), 39 (2001)

    Google Scholar 

  38. Gray, B.: Collaborating: Finding Common Ground for Multiparty Problems (1989)

    Google Scholar 

  39. Guzman, A.L.: The messages of mute machines: human-machine communication with industrial technologies. Communication+ 1 5(1), 1–30 (2016)

    Google Scholar 

  40. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: European Conference on Computer Vision, pp. 3–19. Springer (2016)

    Chapter  Google Scholar 

  41. Hill, J., Ford, W.R., Farreras, I.G.: Real conversations with artificial intelligence: a comparison between human-human online conversations and human-chatbot conversations. Comput. Hum. Behav. 49, 245–250 (2015)

    Article  Google Scholar 

  42. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput.-Hum. Interact. (TOCHI) 7(2), 174–196 (2000)

    Article  Google Scholar 

  43. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016)

    Article  Google Scholar 

  44. Holzinger, A., Plass, M., Holzinger, K., Crişan, G.C., Pintea, C.M., Palade, V.: Towards interactive machine learning (iml): applying ant colony algorithms to solve the traveling salesman problem with the human-in-the-loop approach. In: International Conference on Availability, Reliability, and Security, pp. 81–95. Springer (2016)

    Google Scholar 

  45. Hong, H.Y., Chen, F.C., Chai, C.S., Chan, W.C.: Teacher-education students views about knowledge building theory and practice. Instr. Sci. 39(4), 467–482 (2011)

    Article  Google Scholar 

  46. Huber, G.P., Lewis, K.: Cross-understanding: implications for group cognition and performance. Acad. Manag. Rev. 35(1), 6–26 (2010)

    Google Scholar 

  47. iOS Siri, A.: Apple (2013)

    Google Scholar 

  48. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2014)

    Google Scholar 

  49. Karami, A.B., Jeanpierre, L., Mouaddib, A.I.: Human-robot collaboration for a shared mission. In: Proceedings of the 5th ACM/IEEE international conference on Human-robot interaction, pp. 155–156. IEEE Press (2010)

    Google Scholar 

  50. Kelley, R., Wigand, L., Hamilton, B., Browne, K., Nicolescu, M., Nicolescu, M.: Deep networks for predicting human intent with respect to objects. In: Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction, pp. 171–172. ACM (2012)

    Google Scholar 

  51. Koch, J.: Design implications for designing with a collaborative ai. In: AAAI Spring Symposium Series, Designing the User Experience of Machine Learning Systems (2017)

    Google Scholar 

  52. Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces, pp. 126–137. ACM (2015)

    Google Scholar 

  53. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  54. Lala, D., Inoue, K., Milhorat, P., Kawahara, T.: Detection of social signals for recognizing engagement in human-robot interaction (2017). arXiv:1709.10257 [cs.HC]

  55. Lang, F., Fink, A.: Collaborative machine scheduling: challenges of individually optimizing behavior. Concurr. Comput. Pract. Exp. 27(11), 2869–2888 (2015)

    Article  Google Scholar 

  56. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge university press, Cambridge (1991)

    Google Scholar 

  57. Lee, D., Lee, J., Kim, E.K., Lee, J.: Dialog act modeling for virtual personal assistant applications using a small volume of labeled data and domain knowledge. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  58. Lei, T., Barzilay, R., Jaakkola, T.: Rationalizing neural predictions (2016). arXiv:1606.04155

  59. Levine, S.J., Williams, B.C.: Concurrent plan recognition and execution for human-robot teams. In: ICAPS (2014)

    Google Scholar 

  60. Licklider, J.C.: Man-computer symbiosis. IRE Trans. Hum. Factors Electron. 1, 4–11 (1960)

    Article  Google Scholar 

  61. Lipton, Z.C.: The mythos of model interpretability (2016). arXiv:1606.03490

  62. Mavridis, N.: A review of verbal and non-verbal human-robot interactive communication. Robot. Auton. Syst. 63, 22–35 (2015)

    Article  MathSciNet  Google Scholar 

  63. Mohammed, S., Ringseis, E.: Cognitive diversity and consensus in group decision making: the role of inputs, processes, and outcomes. Organ. Behav. Hum. Decis. Process. 85(2), 310–335 (2001)

    Article  Google Scholar 

  64. Nehaniv, C.L., Dautenhahn, K., Kubacki, J., Haegele, M., Parlitz, C., Alami, R.: A methodological approach relating the classification of gesture to identification of human intent in the context of human-robot interaction. In: ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005, pp. 371–377. IEEE (2005)

    Google Scholar 

  65. Novak, J.: Mine, yours... ours? Designing for principal-agent collaboration in interactive value creation. Wirtschaftsinformatik 1, 305–314 (2009)

    Google Scholar 

  66. Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

    Article  Google Scholar 

  67. Pantic, M., Pentland, A., Nijholt, A., Huang, T.S.: Human computing and machine understanding of human behavior: a survey. In: Artifical Intelligence for Human Computing, pp. 47–71. Springer (2007)

    Google Scholar 

  68. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  69. Rich, C., Ponsler, B., Holroyd, A., Sidner, C.L.: Recognizing engagement in human-robot interaction. In: 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 375–382. IEEE (2010)

    Google Scholar 

  70. Robert, S., Büttner, S., Röcker, C., Holzinger, A.: Reasoning under uncertainty: towards collaborative interactive machine learning. In: Machine Learning for Health Informatics, pp. 357–376. Springer (2016)

    Google Scholar 

  71. Robinson, T.N., Patrick, K., Eng, T.R., Gustafson, D., et al.: An evidence-based approach to interactive health communication: a challenge to medicine in the information age. JAMA 280(14), 1264–1269 (1998)

    Article  Google Scholar 

  72. Roschelle, J., Teasley, S.D., et al.: The construction of shared knowledge in collaborative problem solving. Comput.-Support. Collab. Learn. 128, 69–197 (1995)

    Google Scholar 

  73. Ruttkay, Z., Reidsma, D., Nijholt, A.: Human computing, virtual humans and artificial imperfection. In: Proceedings of the 8th international conference on Multimodal interfaces, pp. 179–184. ACM (2006)

    Google Scholar 

  74. Sato, E., Yamaguchi, T., Harashima, F.: Natural interface using pointing behavior for human-robot gestural interaction. IEEE Trans. Industr. Electron. 54(2), 1105–1112 (2007)

    Article  Google Scholar 

  75. Schurr, N., Marecki, J., Tambe, M., Scerri, P., Kasinadhuni, N., Lewis, J.P.: The future of disaster response: humans working with multiagent teams using defacto. In: AAAI Spring Symposium: AI Technologies for Homeland Security, pp. 9–16 (2005)

    Google Scholar 

  76. Shapiro, D., Shachter, R.: User-agent value alignment. In: Proceedings of The 18th National Conference on Artificial Intelligence AAAI (2002)

    Google Scholar 

  77. Sheridan, T.B.: Human-robot interaction: status and challenges. Hum. Factors 58(4), 525–532 (2016)

    Article  Google Scholar 

  78. Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  79. Sidner, C.L., Lee, C., Morency, L.P., Forlines, C.: The effect of head-nod recognition in human-robot conversation. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, pp. 290–296. ACM (2006)

    Google Scholar 

  80. Simard, P., Chickering, D., Lakshmiratan, A., Charles, D., Bottou, L., Suarez, C.G.J., Grangier, D., Amershi, S., Verwey, J., Suh, J.: Ice: enabling non-experts to build models interactively for large-scale lopsided problems (2014). arXiv:1409.4814

  81. Soller, A.: Supporting social interaction in an intelligent collaborative learning system. Int. J. Artif. Intell. Educ. (IJAIED) 12, 40–62 (2001)

    Google Scholar 

  82. Stahl, G.: Shared meaning, common ground, group cognition. In: Group Cognition: Computer Support for Building Collaborative Knowledge, pp. 347–360 (2006)

    Google Scholar 

  83. Stahl, G.: From intersubjectivity to group cognition. Comput. Support. Coop. Work (CSCW) 25(4–5), 355–384 (2016)

    Article  Google Scholar 

  84. Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning perspective. Auton. Robots 8(3), 345–383 (2000)

    Article  Google Scholar 

  85. Taha, T., Miró, J.V., Dissanayake, G.: A pomdp framework for modelling human interaction with assistive robots. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 544–549. IEEE (2011)

    Google Scholar 

  86. Theiner, G., Allen, C., Goldstone, R.L.: Recognizing group cognition. Cogn. Syst. Res. 11(4), 378–395 (2010)

    Article  Google Scholar 

  87. Turner, P.: Mediated Cognition. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  88. Vondrick, C., Oktay, D., Pirsiavash, H., Torralba, A.: Predicting motivations of actions by leveraging text. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2997–3005 (2016)

    Google Scholar 

  89. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 98–106 (2016)

    Google Scholar 

  90. Wenger, E.: Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge. Morgan Kaufmann (2014)

    Google Scholar 

  91. Wood, D.J., Gray, B.: Toward a comprehensive theory of collaboration. J. Appl. Behav. Sci. 27(2), 139–162 (1991)

    Article  Google Scholar 

  92. Woolf, B.P.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-Learning. Morgan Kaufmann (2010)

    Google Scholar 

  93. Yoshikawa, Y., Shinozawa, K., Ishiguro, H., Hagita, N., Miyamoto, T.: Responsive robot gaze to interaction partner. In: Robotics: Science and Systems (2006)

    Google Scholar 

  94. Yu, Z., Ramanarayanan, V., Lange, P., Suendermann-Oeft, D.: An open-source dialog system with real-time engagement tracking for job interview training applications. In: Proceedings of IWSDS (2017)

    Google Scholar 

  95. Zhang, S., Sridharan, M.: Active visual sensing and collaboration on mobile robots using hierarchical pomdps. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pp. 181–188. International Foundation for Autonomous Agents and Multiagent Systems (2012)

    Google Scholar 

  96. Zhou, J., Chen, F.: Making machine learning useable. Int. J. Intell. Syst. Technol. Appl. 14(2), 91–109 (2015)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 637991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janin Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koch, J., Oulasvirta, A. (2018). Group Cognition and Collaborative AI. In: Zhou, J., Chen, F. (eds) Human and Machine Learning. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-90403-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90403-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90402-3

  • Online ISBN: 978-3-319-90403-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics