Skip to main content

Model Explanation and Interpretation Concepts for Stimulating Advanced Human-Machine Interaction with “Expert-in-the-Loop”

  • Chapter
  • First Online:
Human and Machine Learning

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

We propose two directions for stimulating advanced human-machine interaction in machine learning systems. The first direction acts on a local level by suggesting a reasoning process why certain model decisions/predictions have been made for current sample queries. It may help to better understand how the model behaves and to support humans for providing more consistent and certain feedbacks. A practical example from visual inspection of production items underlines higher human labeling consistency. The second direction acts on a global level by addressing several criteria which are necessary for a good interpretability of the whole model. By meeting the criteria, the likelihood increases (1) of gaining more funded insights into the behavior of the system, and (2) of stimulating advanced expert/operators feedback in form of active manipulations of the model structure. Possibilities how to best integrate different types of advanced feedback in combination with (on-line) data using incremental model updates will be discussed. This leads to a new, hybrid interactive model building paradigm, which is based on subjective knowledge versus objective data and thus integrates the “expert-in-the-loop” aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mapr.com/blog/reduce-costs-and-improve-health-care-with-big-data/.

  2. 2.

    https://arimo.com/machine-learning/2016/manufacturing-downtime-cost-reduction-predictive-maintenance/.

  3. 3.

    http://ec.europa.eu/research/industrial_technologies/factories-of-the-future_en.html.

  4. 4.

    http://whatis.techtarget.com/definition/self-healing.

References

  1. Abonyi, J.: Fuzzy Model Identification for Control. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  2. Akerkar, R., Sajja, P.: Knowledge-Based Systems. Jones & Bartlett Learning, Sudbury (2009)

    Google Scholar 

  3. Al-Taani, A.: An expert system for car failure diagnosis. Eng. Technol. 1, 445–458 (2007)

    Google Scholar 

  4. Alizadeh, S., Kalhor, A., Jamalabadi, H., Araabi, B., Ahmadabadi, M.: Online local input selection through evolving heterogeneous fuzzy inference system. IEEE Trans. Fuzzy Syst. 24(6), 1364–1377 (2016)

    Article  Google Scholar 

  5. Alonso, J., Magdalena, L.: Special issue on interpretable fuzzy systems. Inf. Sci. 181, 4331–4339 (2011)

    Article  MathSciNet  Google Scholar 

  6. Angelov, P.: Evolving Takagi-Sugeno fuzzy systems from streaming data, eTS+. In: Angelov, P., Filev, D., Kasabov, N. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 21–50. Wiley, New York (2010)

    Chapter  Google Scholar 

  7. Angelov, P.: Autonomous Learning Systems: From Data Streams to Knowledge in Real-time. Wiley, New York (2012)

    Book  Google Scholar 

  8. Angelov, P., Filev, D.: Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models. In: Proceedings of FUZZ-IEEE 2005, pp. 1068–1073. Reno, Nevada, U.S.A. (2005)

    Google Scholar 

  9. Angelov, P., Lughofer, E., Zhou, X.: Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst. 159(23), 3160–3182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Angelov, P., Filev, D., Kasabov, N.: Evolving Intelligent Systems – Methodology and Applications. Wiley, New York (2010)

    Book  Google Scholar 

  11. Ashby, F., Ennis, D.: Similarity measures. Scholarpedia 2(12), 4116 (2007)

    Article  Google Scholar 

  12. Baerhens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Boltryk, P., Harris, C.J., White, N.M.: Intelligent sensors - a generic software approach. J. Phys: Conf. Ser. 15, 155–160 (2005)

    Google Scholar 

  14. Bosnić, Z., Demšar, J., Kešpret, G., Rodrigues, P., Gama, J., Kononenko, I.: Enhancing data stream predictions with reliability estimators and explanation. Eng. Appl. Artif. Intell. 34, 178–192 (2014)

    Article  Google Scholar 

  15. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. Chapman and Hall, Boca Raton (1993)

    MATH  Google Scholar 

  16. Burger, M., Haslinger, J., Bodenhofer, U., Engl, H.W.: Regularized data-driven construction of fuzzy controllers. J. Inverse Ill-Posed Probl. 10(4), 319–344 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caleb-Solly, P., Smith, J.: Adaptive surface inspection via interactive evolution. Image Vis. Comput. 25(7), 1058–1072 (2007)

    Article  Google Scholar 

  18. Casillas, J., Cordon, O., Herrera, F., Magdalena, L.: Interpretability Issues in Fuzzy Modeling. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  19. Castillo, E., Alvarez, E.: Expert Systems: Uncertainty and Learning. Computational Mechanics Publications, Southampton (2007)

    MATH  Google Scholar 

  20. Castro, J., Delgado, M.: Fuzzy systems with defuzzification are universal approximators. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 149–152 (1996)

    Article  Google Scholar 

  21. Chin, K.S., Chan, A., Yang, J.B.: Development of a fuzzy FMEA based product design system. Int. J. Adv. Manuf. Technol. 36(7–8), 633–649 (2008)

    Article  Google Scholar 

  22. Costa, B., Angelov, P., Guedes, L.: Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing 150(A), 289–303 (2015)

    Article  Google Scholar 

  23. Costabile, M., Fogli, D., Mussion, P., Piccinno, A.: Visual interactive systems for end-user development: a model-based design methodology. IEEE Trans. Syst. Man Cybern. part A: Cybern. 37(6), 1029–1046 (2007)

    Article  Google Scholar 

  24. Cross, V.V., Sudkamp, T.A.: Similarity and Compatibility in Fuzzy Set Theory: Assessment and Applications. Springer, Physica, Heidelberg (2010)

    MATH  Google Scholar 

  25. Dua, S., Acharya, U., Dua, P.: Machine Learning in Healthcare Informatics. Intelligent Systems Reference Library. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  26. Fiordaliso, A.: A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis. Fuzzy Sets Syst. 118(2), 281–296 (2001)

    Article  MathSciNet  Google Scholar 

  27. Fitch, E.: Proactive Maintenance for Mechanical Systems. Elsevier Science Publishers, Amsterdam (1992)

    Google Scholar 

  28. Gacto, M., Alcala, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)

    Article  Google Scholar 

  29. Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, Boca Raton (2010)

    Book  MATH  Google Scholar 

  30. Greene, J., Hibbard, J., Alvarez, C., Overton, V.: Supporting patient behavior change: approaches used by primary care clinicians whose patients have an increase in activation levels. Ann. Fam. Med. 14(2), 148–154 (2016)

    Article  Google Scholar 

  31. Grizzard, J.: Towards self-healing systems: re-establishing trust in compromised systems. Ph.D. thesis, Georgia Institute of Technology Atlanta (2006). Georgia, U.S.A

    Google Scholar 

  32. Groissboeck, W., Lughofer, E., Thumfart, S.: Associating visual textures with human perceptions using genetic algorithms. Inf. Sci. 180(11), 2065–2084 (2010)

    Article  Google Scholar 

  33. Guo, x., Yu, Q., Li, R., Alm, C., Calvelli, C., Shi, P., Haake, A.: An expert-in-the-loop paradigm for learning medical image grouping. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 9651, pp. 477–488 (2016)

    Chapter  Google Scholar 

  34. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  35. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  36. Heidl, W., Thumfart, S., Lughofer, E., Eitzinger, C., Klement, E.: Machine learning based analysis of gender differences in visual inspection decision making. Inf. Sci. 224, 62–76 (2013)

    Article  MathSciNet  Google Scholar 

  37. Henzgen, S., Strickert, M., Hüllermeier, E.: Rule chains for visualizing evolving fuzzy rule-based systems. Advances in Intelligent Systems and Computing. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, vol. 226, pp. 279–288. Springer, Cambridge, MA (2013)

    Chapter  Google Scholar 

  38. Henzgen, S., Strickert, M., Hüellermeier, E.: Visualization of evolving fuzzy rule-based systems. Evol. Syst. 5(3), 175–191 (2014)

    Article  Google Scholar 

  39. Hisada, M., Ozawa, S., Zhang, K., Kasabov, N.: Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evol. Syst. 1(1), 17–27 (2010)

    Article  Google Scholar 

  40. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 118–131 (2016)

    Article  Google Scholar 

  41. Hooker, G.: Diagnostics and extrapolation in machine learning. Ph.D. thesis, Department of Statistics, Stanford University (2004). Stanford, U.S.A

    Google Scholar 

  42. Hu, R., Namee, B., Delany, S.: Active learning for text classification with reusability. Expert Syst. Appl. 45, 4388–449 (2016)

    Article  Google Scholar 

  43. Hühn, J., Hüllermeier, E.: FR3: a fuzzy rule learner for inducing reliable classifiers. IEEE Trans. Fuzzy Syst. 17(1), 138–149 (2009)

    Article  Google Scholar 

  44. Hüllermeier, E., Brinker, K.: Learning valued preference structures for solving classification problems. Fuzzy Sets Syst. 159(18), 2337–2352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hunink, M.M., Weinstein, M., Wittenberg, E.: Decision Making in Health and Medicine: Integrating Evidence and Values. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  46. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141–154 (2011)

    Article  Google Scholar 

  47. Iglesias, J., Angelov, P., Ledezma, A., Sanchis, A.: Evolving classification of agent’s behaviors: a general approach. Evol. Syst. 1(3), 161–172 (2010)

    Article  Google Scholar 

  48. Iglesias, J., Angelov, P., Ledezma, A., Sanchis, A.: Creating evolving user behavior profiles automatically. IEEE Trans. Knowl. Data Eng. 24(5), 854–867 (2012)

    Article  Google Scholar 

  49. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)

    Article  Google Scholar 

  50. Jackson, P.: Introduction to Expert Systems. Addison Wesley Pub Co Inc., Edinburgh Gate (1999)

    MATH  Google Scholar 

  51. Jin, Y.: Advanced Fuzzy Systems Design and Applications. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  52. Kalhor, A., Araabi, B., Lucas, C.: An online predictor model as adaptive habitually linear and transiently nonlinear model. Evolv. Syst. 1(1), 29–41 (2010)

    Article  Google Scholar 

  53. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. Springer, London (2007)

    MATH  Google Scholar 

  54. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghedira, K.: Discussion and review on evolving data streams and concept drift adapting. In: Evolving Systems (2016). https://doi.org/10.1007/s12530-016-9168-2

    Article  Google Scholar 

  55. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  56. Kosko, B.: Fuzzy Thinking: The New Science of Fuzzy Logic. Flamingo, New York (1994)

    MATH  Google Scholar 

  57. Kraiss, K.: Advanced Man-Machine Interaction: Fundamentals and Implementation (Signals and Communication Technology). Springer, Berlin (2014)

    Google Scholar 

  58. Kuncheva, L.: Fuzzy Classifier Design. Physica, Heidelberg (2000)

    Book  MATH  Google Scholar 

  59. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (Wiley), Southern Gate (2004)

    Google Scholar 

  60. Last, M., Sinaiski, A., Subramania, H.: Predictive maintenance with multi-target classification models. In: Proceedings of the Intelligent Information and Database Systems, Lecture Notes in Computer Science, vol. 5991, pp. 368–377. Springer, Berlin (2010)

    Chapter  Google Scholar 

  61. Lavretsky, E., Wise, K.: Robust Adaptive Control. Springer, London (2013)

    Book  MATH  Google Scholar 

  62. Lee, C.: Fuzzy logic in control systems: fuzzy logic controller - part i and ii. IEEE Trans. Syst. Man Cybern. 20(2), 404–435 (1990)

    Article  MATH  Google Scholar 

  63. Lee, D., Hu, J.: Local model predictive control for ts fuzzy systems. IEEE Trans. Cybern. 47(9), 2556–2567 (2017)

    Article  Google Scholar 

  64. Lemos, A., Caminhas, W., Gomide, F.: Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inf. Sci. 220, 64–85 (2013)

    Article  Google Scholar 

  65. Leng, G., Zeng, X.J., Keane, J.: An improved approach of self-organising fuzzy neural network based on similarity measures. Evol. Syst. 3(1), 19–30 (2012)

    Article  Google Scholar 

  66. Levitt, J.: Complete Guide to Preventive and Predictive Maintenance. Industrial Press Inc., New York (2011)

    Google Scholar 

  67. Liu, B.: Web Data Mining (Data-Centric Systems and Applications). Springer, Heidelberg (2013)

    Google Scholar 

  68. Liu, Y.: Predictive modeling for intelligent maintenance in complex semi-conductor manufacturing processes. Ph.D. thesis, University of Michigan, Ann Arbor (2008)

    Google Scholar 

  69. Lughofer, E.: Evolving Fuzzy Systems – Methodologies, Advanced Concepts and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  70. Lughofer, E.: Human-inspired evolving machines — the next generation of evolving intelligent systems? SMC Newsletter 36 (2011)

    Google Scholar 

  71. Lughofer, E.: On-line incremental feature weighting in evolving fuzzy classifiers. Fuzzy Sets Syst. 163(1), 1–23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. Lughofer, E.: Flexible evolving fuzzy inference systems from data streams (FLEXFIS++). In: Sayed-Mouchaweh, M., Lughofer, E. (eds.) Learning in Non-Stationary Environments: Methods and Applications, pp. 205–246. Springer, New York (2012)

    Chapter  MATH  Google Scholar 

  73. Lughofer, E.: Single-pass active learning with conflict and ignorance. Evol. Syst. 3(4), 251–271 (2012)

    Article  Google Scholar 

  74. Lughofer, E.: Expert-based, hybrid and data-driven design of fuzzy systems for risk management of post parcels. Technical Report FLLL-TR-1301, Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Austria (2013)

    Google Scholar 

  75. Lughofer, E.: On-line assurance of interpretability criteria in evolving fuzzy systems – achievements, new concepts and open issues. Inf. Sci. 251, 22–46 (2013)

    Article  MathSciNet  Google Scholar 

  76. Lughofer, E.: Evolving fuzzy systems – fundamentals, reliability, interpretability and useability. In: Angelov, P. (ed.) Handbook of Computational Intelligence, pp. 67–135. World Scientific, New York (2016)

    Chapter  Google Scholar 

  77. Lughofer, E.: Robust data-driven fault detection in dynamic process environments using discrete event systems. In: Sayed-Mouchaweh, M. (ed.) Diagnosis and Diagnosability of Hybrid Dynamic Systems. Springer, New York (2018)

    Chapter  Google Scholar 

  78. Lughofer, E., Guardiola, C.: On-line fault detection with data-driven evolving fuzzy models. J. Control Intell. Syst. 36(4), 307–317 (2008)

    MATH  Google Scholar 

  79. Lughofer, E., Hüllermeier, E.: On-line redundancy elimination in evolving fuzzy regression models using a fuzzy inclusion measure. In: Proceedings of the EUSFLAT 2011 Conference, pp. 380–387. Elsevier, Aix-Les-Bains, France (2011)

    Google Scholar 

  80. Lughofer, E., Buchtala, O.: Reliable all-pairs evolving fuzzy classifiers. IEEE Trans. Fuzzy Syst. 21(4), 625–641 (2013)

    Article  Google Scholar 

  81. Lughofer, E., Smith, J.E., Caleb-Solly, P., Tahir, M., Eitzinger, C., Sannen, D., Nuttin, M.: Human-machine interaction issues in quality control based on on-line image classification. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(5), 960–971 (2009)

    Article  Google Scholar 

  82. Lughofer, E., Bouchot, J.L., Shaker, A.: On-line elimination of local redundancies in evolving fuzzy systems. Evol. Syst. 2(3), 165–187 (2011)

    Article  Google Scholar 

  83. Lughofer, E., Trawinski, B., Trawinski, K., Kempa, O., Lasota, T.: On employing fuzzy modeling algorithms for the valuation of residential premises. Inf. Sci. 181(23), 5123–5142 (2011)

    Article  Google Scholar 

  84. Lughofer, E., Cernuda, C., Kindermann, S., Pratama, M.: Generalized smart evolving fuzzy systems. Evol. Syst. 6(4), 269–292 (2015)

    Article  Google Scholar 

  85. Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T.: Integrating new classes on the fly in evolving fuzzy classifier designs and its application in visual inspection. Appl. Soft Comput. 35, 558–582 (2015)

    Article  Google Scholar 

  86. Lughofer, E., Richter, R., Neissl, U., Heidl, W., Eitzinger, C., Radauer, T.: Advanced linguistic explanations of classifier decisions for users annotation support. In: Proceedings of the IEEE Intelligent Systems Conference 2016, pp. 421–432. Sofia, Bulgaria (2016)

    Google Scholar 

  87. Lughofer, E., Kindermann, S., Pratama, M., Rubio, J.: Top-down sparse fuzzy regression modeling from data with improved coverage. Int. J. Fuzzy Syst. 19(5), 1645–1658 (2017)

    Article  MathSciNet  Google Scholar 

  88. Lughofer, E., Zavoianu, A.C., Pollak, R., Pratama, M., Meyer-Heye, P., Zörrer, H., Eitzinger, C., Haim, J., Radauer, T.: Self-adaptive evolving forecast models with incremental PLS space update for on-line predicting quality of micro-fluidic chips. Eng. Appl. Artif. Intell. 68, 131–151 (2018)

    Article  Google Scholar 

  89. Lundberg, S., Lee, S.: An unexpected unity among methods for interpreting model predictions. In: Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain (2016)

    Google Scholar 

  90. Luo, M., Sun, F., Liu, H.: Hierarchical structured sparse representation for ts fuzzy systems identification. IEEE Trans. Fuzzy Syst. 21(6), 1032–1043 (2013)

    Article  Google Scholar 

  91. Mamdani, E.: Application of fuzzy logic to approximate reasoning using linguistic systems. Fuzzy Sets Syst. 26(12), 1182–1191 (1977)

    MATH  Google Scholar 

  92. McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics (JSTOR Abstract) 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  93. Mencar, C., Castellano, G., Fanelli, A.: Distinguishability quantification of fuzzy sets. Inf. Sci. 177, 130–149 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  94. Nakashima, T., Schaefer, G., Yokota, Y., Ishibuchi, H.: A weighted fuzzy classifier and its application to image processing tasks. Fuzzy Sets Syst. 158(3), 284–294 (2006)

    Article  MathSciNet  Google Scholar 

  95. Nelles, O.: Nonlinear System Identification. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  96. Ngia, L., Sjöberg, J.: Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm. IEEE Trans. Signal Process. 48(7), 1915–1926 (2000)

    Article  MATH  Google Scholar 

  97. Ordonez, J., Iglesias, J., de Toledo, P., Ledezma, A., Sanchis, A.: Online activity recognition using evolving classifiers. Expert Syst. Appl. 40(4), 1248–1255 (2013)

    Article  Google Scholar 

  98. Park, C., Moon, D., Do, N., Bae, S.: A predictive maintenance approach based on real-time internal parameter monitoring. Int. J. Adv. Manuf. Technol. 85(1), 623–632 (2016)

    Article  Google Scholar 

  99. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley, Hoboken (2007)

    Book  Google Scholar 

  100. Permin, E., Bertelsmeier, F., Blum, M., Bützler, J., Haag, S., Kuz, S., Özdemir, D., Stemmler, S., Thombansen, U., Schmitt, R., Brecher, C., Schlick, C., Abel, D., Popraw, R., Loosen, P., Schulz, W., Schuh, G.: Self-optimizing production systems. Procedia CIRP 41, 417–422 (2016)

    Article  Google Scholar 

  101. Piegat, A.: Fuzzy Modeling and Control. Physica, Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  102. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  103. Pratama, M., Lu, J., Lughofer, E., Zhang, G., Anavatti, S.: Scaffolding type-2 classifier for incremental learning under concept drifts. Neurocomputing 191(304–329) (2016)

    Article  Google Scholar 

  104. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  105. Rallo, R., Ferre-Gine, J., Arena, A., Girault, F.: Neural virtual sensor for the inferential prediction of product quality from process variables. Comput. Chem. Eng. 26(12), 1735–1754 (2004)

    Article  Google Scholar 

  106. Robnik-Sikonja, M., Kononenko, I.: Explaining classifications for individual instances. IEEE Trans. Knowl. Data Eng. 20, 589–600 (2008)

    Article  Google Scholar 

  107. Ronald, R.: On the construction of hierarchical fuzzy systems models. IEEE Trans. Syst. Man Cybern. 28(1), 55–66 (1998)

    Article  Google Scholar 

  108. Rong, H.J., Sundararajan, N., Huang, G.B., Saratchandran, P.: Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst. 157(9), 1260–1275 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  109. Sannen, D., Lughofer, E., Brussel, H.V.: Towards incremental classifier fusion. Intell. Data Anal. 14(1), 3–30 (2010)

    Google Scholar 

  110. Sayed-Mouchaweh, M., Lughofer, E.: Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)

    Book  MATH  Google Scholar 

  111. Senge, R., Huellermeier, E.: Top-down induction of fuzzy pattern trees. IEEE Trans. Fuzzy Syst. 19(2), 241–252 (2011)

    Article  Google Scholar 

  112. Serdio, F., Muoz-Garca, M., Saminger-Platz, S.: Detecting clipping in photovoltaic solar plants using fuzzy systems on the feature space. Sol. Energy 132, 345–356 (2016)

    Article  Google Scholar 

  113. Setnes, M.: Simplification and reduction of fuzzy rules. In: Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.) Interpretability Issues in Fuzzy Modeling, pp. 278–302. Springer, Berlin (2003)

    Chapter  MATH  Google Scholar 

  114. Skrjanc, I.: Confidence interval of fuzzy models: an example using a waste-water treatment plant. Chemometr. Intell. Lab. Syst. 96, 182–187 (2009)

    Article  Google Scholar 

  115. Strumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)

    Article  Google Scholar 

  116. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  117. Tsoukalas, L., Uhrig, R.: Fuzzy and Neural Approaches in Engineering. Wiley, New York (1997)

    Google Scholar 

  118. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  119. Vetterlein, T.: Vagueness: where degree-based approaches are useful, and where we can do without. Soft. Comput. 16(11), 1833–1844 (2012)

    Article  MATH  Google Scholar 

  120. Wang, W., Vrbanek, J.: An evolving fuzzy predictor for industrial applications. IEEE Trans. Fuzzy Syst. 16(6), 1439–1449 (2008)

    Article  Google Scholar 

  121. Ware, M., Frank, E., Holmes, G., Hall, M., Witten, I.: Interactive machine learning: letting users build classifiers. Int. J. Hum Comput Stud. 55(3), 281–292 (2001)

    Article  MATH  Google Scholar 

  122. Weigl, E., Heidl, W., Lughofer, E., Eitzinger, C., Radauer, T.: On improving performance of surface inspection systems by on-line active learning and flexible classifier updates. Mach. Vis. Appl. 27(1), 103–127 (2016)

    Article  Google Scholar 

  123. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, Bulrington (2011)

    Chapter  Google Scholar 

  124. Yager, R.R.: A model of participatory learning. IEEE Trans. Syst. Man Cybern. 20(5), 1229–1234 (1990)

    Article  Google Scholar 

  125. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  126. Zain, C., Pratama, M., Lughofer, E., Anavatti, S.: Evolving type-2 web news mining. Appl. Soft Comput. 54, 200–220 (2017)

    Article  Google Scholar 

  127. Zavoianu, A.C., Lughofer, E., Pollak, R., Meyer-Heye, P., Eitzinger, C., Radauer, T.: Multi-objective knowledge-based strategy for process parameter optimization in micro-fluidic chip production. In: Proceedings of the SSCI 2017 Conference (CIES Workshop), 1927–1934, Honolulu, Hawaii (2017)

    Google Scholar 

  128. Zhou, S., Gan, J.: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy systems modelling. Fuzzy Sets Syst. 159(23), 3091–3131 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges the Austrian research funding association (FFG) within the scope of the ‘IKT of the future’ programme, project ‘Generating process feedback from heterogeneous data sources in quality control (mvControl)’ (contract # 849962) and the Upper Austrian Technology and Research Promotion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Lughofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lughofer, E. (2018). Model Explanation and Interpretation Concepts for Stimulating Advanced Human-Machine Interaction with “Expert-in-the-Loop”. In: Zhou, J., Chen, F. (eds) Human and Machine Learning. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-90403-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90403-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90402-3

  • Online ISBN: 978-3-319-90403-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics