Skip to main content

Single Cell Oils (SCOs) of Oleaginous Filamentous Fungi as a Renewable Feedstock: A Biodiesel Biorefinery Approach

  • Chapter
  • First Online:
Fungal Biorefineries

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Single cell oils (SCOs) from oleaginous fungi are fast occupying centre stage as biodiesel feedstock and offer many advantages over plant- and algal-based oils. The biorefinery concept involves the production of SCOs along with other coproducts by these fungi when grown on waste agro-residue biomass. Filamentous fungi, in general, are able to effectively utilize this waste biomass as they have the capacity to produce lignocellulosic enzymes, namely, cellulase, xylanase, etc. The utilization of these wastes as growth substrates would not only solve the problem of waste disposal but also help in reducing the production cost of biodiesel. This chapter deals with production of SCOs from various filamentous fungi as feedstock for biodiesel when grown on lignocellulosic wastes. Two important parameters to be considered for biodiesel production are feedstock selection and fuel properties of biodiesel which are strain and growth substrate specific. Approaches to improve the process efficiency like optimization of fermentation conditions, one-step transesterification and metabolic engineering as well as the physico-chemical properties of biodiesel are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggelis G, Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous microorganisms growing on vegetable oils. Antonie Van Leeuwenhoek 72:159–165

    Article  PubMed  CAS  Google Scholar 

  • Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G (1995) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Gracas y Aceites 46:169–173

    Article  CAS  Google Scholar 

  • Ahmad FB, Zhang Z, Doherty WOS, Hara IMO, Crops T (2016) Evaluation of oil production from oil palm empty fruit bunch by oleaginous micro-organisms. Biofuels Bioprod Biorefin 10:378–392

    Article  CAS  Google Scholar 

  • Ali TH, El-Gamal MS, El-Ghonemy DH, Awad GE, Tantawy AE (2017) Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design. Ann Microbiol 67:601–613

    Article  CAS  Google Scholar 

  • Almeida JRM, Fávaro LC, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416

    Article  CAS  Google Scholar 

  • Aoki H, Miyamoto N, Furuya Y, Mankura M, Endo Y, Fujimoto K (2002) Incorporation and accumulation of docosahexaenoic acid from the medium by Pichia methanolica HA-32. Biosci Biotechnol Biochem 66:2632–2638

    Article  PubMed  CAS  Google Scholar 

  • Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297

    Article  CAS  Google Scholar 

  • Asadi SZ, Khosravi-Darani K, Nikoopour H, Bakhoda H (2015) Evaluation of the effect of process variables on the fatty acid profile of single cell oil produced by Mortierella using solid-state fermentation. Crit Rev Biotechnol 35:94–102

    Article  PubMed  CAS  Google Scholar 

  • Ayadi I, Kamoun O, Trigui-Lahiani H, Hdiji A, Gargouri A, Belghith H, Guerfali M (2016) Single cell oil production from a newly isolated Candida viswanathii Y-E4 and agro-industrial by-products valorization. J Ind Microbiol Biotechnol 43:901–914. https://doi.org/10.1007/s10295-016-1772-4

    Article  PubMed  CAS  Google Scholar 

  • Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302

    Article  CAS  Google Scholar 

  • Bellou S, Moustogianni A, Makri A, Aggelis G (2012) Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl Biochem Biotechnol 166:146–158

    Article  PubMed  CAS  Google Scholar 

  • Bellou S, Triantaphyllidou I, Aggeli D, Elazzazy A, Baeshen M, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35

    Article  PubMed  CAS  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea J (2009) Progress in lipid research Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  PubMed  CAS  Google Scholar 

  • Bharathiraja B, Sowmya V, Sridharan S, Yuvaraj D, Jayamuthunagai J, Praveenkumar R (2017) Biodiesel production from microbial oil derived from wood isolate Trichoderma reesei. Bioresour Technol 239:538–541

    Article  PubMed  CAS  Google Scholar 

  • Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Yao J, Chen X, Wu J (2010) Breeding of high lipid producing strain of Geotrichum robustum by ion beam implantation. Electron J Biotechnol. https://doi.org/10.2225/vol13-issue6-fulltext-4

  • Carvalho AKF, Rivaldi JD, Barbosa JC, De Castro HF (2015) Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides – a sustainable pathway for biofuel production. Bioresour Technol 181:47–53

    Article  PubMed  CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chang Y-H, Chang K-S, Lee C-F, Hsu C-L, Huang C-W, Jang H-D (2015) Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72:95–103

    Article  CAS  Google Scholar 

  • Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057

    Article  CAS  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Cheirsilp B, Kitcha S (2015) Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: fed-batch and repeated-batch fermentations. Ind Crop Prod 66:73–80

    Article  CAS  Google Scholar 

  • Chen H, Hao G, Wang L, Wang H, Gu Z, Liu L (2015) Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi. Sci Rep 5:11247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen Z, Ratledge C (eds) (2005) Single cell oils. AOCS Press, Champaign

    Google Scholar 

  • Davies R (1988) Yeast oil from cheese whey; process development. In: Moreton R (ed) Single cell oil. Longman, London, pp 99–145

    Google Scholar 

  • Demirbaş A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120

    Article  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34

    Article  CAS  Google Scholar 

  • Dey P, Banerjee J, Maiti MK (2011) Comparative lipid profiling of two endophytic fungal isolates – Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol 102:5815–5823

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Fernández D, Martínez PL, Buey RM, Revuelta JL, Jiménez A (2017) Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils. Biotechnol Biofuels 10:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorado MP, Cruz F, Palomar JM, Lopez FJ (2006) An approach to the economics of two vegetable oil-based biofuels in Spain. Renew Energy 31:1231–1237

    Article  CAS  Google Scholar 

  • Economou C, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Economou C, Aggelis G, Pavlou S, Vayenas DV (2011) Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol Bioeng 108:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Fakas S, Galiotou-panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzym Microb Technol 40:1321–1327

    Article  CAS  Google Scholar 

  • Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol 105:1062–1070

    Article  PubMed  CAS  Google Scholar 

  • Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009a) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120

    Article  PubMed  CAS  Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou-panayotou M, Mallouchos A, Aggelis G (2009b) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    Article  CAS  Google Scholar 

  • Fickers P, Benetti P, Wache Y, Marty A, Mauersberger S, Smit M, Nicaud J (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  PubMed  CAS  Google Scholar 

  • Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V (2017) FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS One 12(1):e0170611

    Article  PubMed  PubMed Central  Google Scholar 

  • GAIN Report (2016) Number IN6088, India biofuels annual, 2016, USDA Foreign Agricultural Service

    Google Scholar 

  • GAIN Report (2017) Number IN7075, India biofuels annual, 2017, USDA Foreign Agricultural Service

    Google Scholar 

  • Gao D, Zeng J, Yu X, Dong T, Chen S (2014) Improved lipid accumulation by morphology engineering of oleaginous fungus Mortierella Isabellina. Biotechnol Bioeng 111:1758–1766

    Article  PubMed  CAS  Google Scholar 

  • Gopinath A, Puhan S, Nagarajan G (2009) Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renew Energy 34:1806–1811

    Article  CAS  Google Scholar 

  • Hao G, Chen H, Wang L, Gu Z, Song Y, Zhang H, Chen W, Chen Q (2014) Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 80:2672–2678. https://doi.org/10.1128/AEM.00140-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harde SM, Wang Z, Horne M, Zhu JY, Pan X (2016) Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina. Fuel 175:64–74

    Article  CAS  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Huang C, Chen X, Xiong L, Ma L, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Zhou H, Tang Z, Liu H, Cao Y, Qiao D, Cao Y (2016) Novel fungal lipids for the production of biodiesel resources by Mucor fragilis AFT7-4. Environ Prog Sustain Energy 35:1784–1792

    Article  CAS  Google Scholar 

  • Kakkad H, Khot M, Zinjarde S, Ravikumar A (2015a) Biodiesel production by direct in situ transesterification of an oleaginous tropical mangrove fungus grown on untreated agro-residues and evaluation of its fuel properties. Bioenergy Res 8:1788–1799

    Article  CAS  Google Scholar 

  • Kakkad H, Khot M, Zinjarde S, Ravikumar A, Ravi Kumar V, Kulkarni BD (2015b) Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification. Bioresour Technol 197:502–507

    Article  PubMed  CAS  Google Scholar 

  • Kamat S, Khot M, Zinjarde S, RaviKumar A, Gade WN (2013) Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol 135:246–253

    Article  PubMed  CAS  Google Scholar 

  • Katre G, Joshi C, Khot M, Zinjarde S, RaviKumar A (2012) Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express 2:36. https://doi.org/10.1186/2191-0855-2-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katre G, Ajmera N, Zinjarde S, RaviKumar A (2017) Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as biofactories for biodiesel production. Microb Cell Factories 16:176

    Google Scholar 

  • Katre G, Raskar S, Ravi Kumar V, Kulkarni B, Zinjarde S, RaviKumar A (2018) Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy 142 944e952

    Article  CAS  Google Scholar 

  • Khot M, Kamat S, Zinjarde S, Pant A, Chopade B, Ravikumar A (2012) Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Factories 11:71

    Article  CAS  Google Scholar 

  • Khot M, Gupta R, Barve K, Zinjarde S, Govindwar S, RaviKumar A (2015) Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel. J Microbiol Biotechnol 25:459–463

    Article  PubMed  CAS  Google Scholar 

  • Kitcha S, Cheirsilp B (2014) Bioconversion of lignocellulosic palm byproducts into enzymes and lipid by newly isolated oleaginous fungi. Biochem Eng J 88:95–100

    Article  CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2008) “ Designer ” biodiesel: optimizing fatty Ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2011) Kinematic viscosity of fatty acid methyl esters: prediction, calculated viscosity contribution of esters with unavailable data, and carbon – oxygen equivalents. Fuel 90:3217–3224

    Article  CAS  Google Scholar 

  • Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285:15663–15667. https://doi.org/10.1074/jbc.R110.118356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research FA. Trends Biotechnol 29:53–61

    Article  PubMed  CAS  Google Scholar 

  • Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, Tzimorotas D, Vuoristo KS, Horn SJ, Mounier J, Shapaval V (2017) Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high – throughput FTIR spectroscopy. Microb Cell Factories 16:101

    Article  Google Scholar 

  • Koutb M, Mohamed F (2011) A potent lipid producing isolate of Epicoccum purpurascens AUMC5615 and its promising use for biodiesel production. Biomass Bioenergy 35:3182–3187

    Article  CAS  Google Scholar 

  • Krawczyk T (1996) Biodiesel. In: International news on fats, oils and related materials. AOCS Press, Champaign, p 801

    Google Scholar 

  • Kumar AK, Vatsyayan P, Goswami P (2010) Production of lipid and fatty acids during growth of Aspergillus terreus on hydrocarbon substrates, Appl. Biochem.Biotechnol !60: 1293–1300

    Article  PubMed  CAS  Google Scholar 

  • Lapuerta M, Rodríguez-fernández J, Armas O (2010) Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index. Chem Phys Lipids 163:720–727

    Article  PubMed  CAS  Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Cheng W, Ding HT, Chen XJ, Zhou QF, Zhao YH (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031

    Article  Google Scholar 

  • Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780

    Article  CAS  Google Scholar 

  • Liu S, Abrahamson LP, Scott GM (2012) Biorefinery: ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass Bioenergy 39:1–4

    Article  Google Scholar 

  • Lozano-Martínez P, Buey RM, Ledesma-Amaro R, Jiménez A, Revuelta JL (2017) Engineering Ashbya gossypii strains for de novo lipid production using industrial by-products. Microb Biotechnol 10:425–433

    Article  PubMed  CAS  Google Scholar 

  • Meeuwse P, Tramper J (2011) Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: validation of the chemostat model using yeast culture data from literature. Bioprocess Biosyst Eng 34:951–961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeuwse P, Tramper J, Rinzema A (2011) Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina. Bioprocess Biosyst Eng 34:939–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meeuwse P, Akbari P, Tramper J, Rinzema A (2012a) Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina. Bioprocess Biosyst Eng 35:591–603

    Article  PubMed  CAS  Google Scholar 

  • Meeuwse P, Klok AJ, Haemers S, Tramper J, Rinzema A (2012b) Growth and lipid production of Umbelopsis isabellina on a solid substrate — mechanistic modeling and validation. Process Biochem 47:1228–1242

    Article  CAS  Google Scholar 

  • Meeuwse P, Sanders JPM, Tramper J, Rinzema A (2013) Lipids from yeasts and fungi: tomorrow’s source of biodiesel? Biofuels Bioprod Biorefin 7:521–524

    Article  CAS  Google Scholar 

  • Moser BR (2009) Biodiesel production, properties, and feedstocks. In vitro cellular and developmental biology. Plants 45:229–266

    CAS  Google Scholar 

  • Moser BR, Vaughn SF (2012) Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenergy 37:31–41

    Article  CAS  Google Scholar 

  • Muniraj IK, Xiao L, Hu Z, Zhan X, Shi J (2013) Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res 47:3477–3483

    Article  PubMed  CAS  Google Scholar 

  • NREL (2009) Biodiesel Handling and Use Guide 4th edition National Renewable EnergyLaboratory.http://biodiesel.org/docs/using-hotline/nrel-handling-and-use.pdf

  • Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: Technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I (2001) Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek 80:215–224

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:0124–0130

    Article  CAS  Google Scholar 

  • Papanikolaou S, Komaitis M, Aggelis G (2004a) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004b) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97:867–875

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2007) Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol 109:1060–1070

    Article  CAS  Google Scholar 

  • Papanikolaou S, Diamantopoulou P, Chatzifragkou A, Philippoussis A, Aggelis G (2010) Suitability of low-cost sugars as substrates for lipid production by the fungus Thamnidium elegans. Energy Fuel 24:4078–4086

    Article  CAS  Google Scholar 

  • Papanikolaou S, Dimou A, Fakas S, Diamantopoulou P, Philippoussis A (2011) Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J Appl Microbiol 110:1138–1150

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Rontou M, Belka A, Athenaki M, Gardeli C, Mallouchos A, Kalantzi O, Koutinas A, Kookos I, Zeng A, Aggelis G (2017) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 17:262–281

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Chen H (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239–242

    Article  CAS  Google Scholar 

  • Peng X, Chen H (2008) Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol 99:3885–3889

    Article  PubMed  CAS  Google Scholar 

  • Pignède G, Wang H, Fudalej F, Seman M, Gaillardin C, Nicaud J (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinzi S, Leiva-Candia D, López-García I, Redel-Macías MD, Dorado MP (2013) Latest trends in feedstocks for biodiesel production. Biofuels Bioprod Biorefin 8:126–143

    Article  CAS  Google Scholar 

  • Pratas MJ, Freitas S, Oliveira MB, Monteiro SC, Lima AS, Coutinho JAP (2010) Densities and viscosities of fatty acid methyl and ethyl esters. J Chem Eng Data 55:3983–3990

    Article  CAS  Google Scholar 

  • Pratas MJ, Freitas SVD, Oliveira MB, Monteiro SC, Lima S, Coutinho JAP (2011) Biodiesel density: experimental measurements and prediction models. Energy Fuel 25:2333–2340

    Article  CAS  Google Scholar 

  • Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111. https://doi.org/10.1016/j.fuel.2011.06.070

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson S (eds) Microbial Lipids. Academic, London, pp 567–668

    Google Scholar 

  • Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36:1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Wynn J (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52

    Article  PubMed  CAS  Google Scholar 

  • REN21 – Renewable Energy Policy Network for the 21st century (2016) Renewables 2016 Global Status Report. http://www.ren21.net/status-of-renewables/global-status-report/

  • REN21 – Renewable Energy Policy Network for the 21st century (2017) Renewables 2017 Global Status Report. http://www.ren21.net/status-of-renewables/global-status-report/

  • Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97:3063–3072

    Article  PubMed  CAS  Google Scholar 

  • Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205

    Article  PubMed  CAS  Google Scholar 

  • Ruan Z, Zanotti M, Archer S, Liao W, Liu Y (2014) Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn Stover hydrolysate for advanced biofuel production. Bioresour Technol 163:12–17

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Sakuradani E, Okuda T, Kikukawa H, Ando A (2017) Metabolic engineering of oleaginous fungus Mortierella alpina for high production of oleic and linoleic acids. Bioresour Technol (in press) https://doi.org/10.1016/j.biortech.2017.06.089

  • Song Y, Wynn JP, Li Y, Grantham D, Ratledge C (2001) A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147:1507–1515

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287

    Article  PubMed  CAS  Google Scholar 

  • Tamano K, Miura A, Koike H, Kamisaka Y, Umemura M (2017) High-efficiency extracellular release of free fatty acids from Aspergillus oryzae using non-ionic surfactants. J Biotechnol 248:9–14

    Article  PubMed  CAS  Google Scholar 

  • Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C (2015) Comparison of biochemical activities between high and low lipid-producing strains of Mucor circinelloides: an explanation for the high oleaginicity of strain WJ11. PLoS One 10(6):e0128396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tong D, Hu C, Jiang K (2011) Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters. J Am Oil Chem Soc 88:415–423

    Article  CAS  Google Scholar 

  • Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10:348–360

    Article  CAS  Google Scholar 

  • Venkata Subhash G, Venkata Mohan S (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102:9286–9290

    Article  PubMed  CAS  Google Scholar 

  • Venkata Subhash G, Venkata Mohan S (2014) Lipid accumulation for biodiesel production by oleaginous fungus Aspergillus awamori: influence of critical factors. Fuel 116:509–515

    Article  CAS  Google Scholar 

  • Venkata Subhash G, Venkata Mohan S (2015) Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Convers Biorefinery 5:215–226

    Article  CAS  Google Scholar 

  • Vicente G, Bautista LF, Rodriguez R, Gutiérrez FJ, Sadaba I, Ruiz-Vazquez RM, Torres-Martinez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  • Vicente G, Bautista LF, Gutierrez FJ, Rodríguez R, Martínez V, Rodríguez-Frometa RA, Ruiz-Vazquez RM, Torres-Martínez S, Garre V (2010) Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24:3173–3178

    Article  CAS  Google Scholar 

  • Wang Y, Lu Z (2005) Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328. Process Biochem 40:1043–1051

    Article  CAS  Google Scholar 

  • Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, Van WS, Chen X, Ii LET, Xu Q, Himmel ME, Zhang M (2013) Genomic, proteomic and biochemical analyses of oleaginous mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production. PLoS One 8:e71068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei Y, Siewers V, Nielsen J (2017) Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Appl Microbiol Biotechnol (2017) 101:3577–3585

    Article  CAS  Google Scholar 

  • Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143:253–257

    Article  CAS  PubMed  Google Scholar 

  • Wynn JP, Hamidt A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917

    Article  PubMed  CAS  Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    Article  PubMed  CAS  Google Scholar 

  • Xing D, Wang H, Pan A, Wang J, Xue D (2012) Assimilation of corn fiber hydrolysates and lipid accumulation by Mortierella isabellina. Biomass Bioenergy 39:494–501

    Article  CAS  Google Scholar 

  • Yao R, Zhang P, Wang H, Deng S, Zhu H (2012) One-step fermentation of pretreated rice straw producing microbial oil by a novel strain of Mortierella elongata PFY. Bioresour Technol 124:512–515

    Article  PubMed  CAS  Google Scholar 

  • Yousuf A (2012) Biodiesel from lignocellulosic biomass - prospects and challenges. Waste Manag 32:2061–2067

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Hu B (2012) Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl Biochem Biotechnol 166:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Hu B (2014) Microbial lipid production from corn Stover via Mortierella isabellina. Appl Biochem Biotechnol 174:574–586

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Dubé MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Shen H, Zhang X, Yu X, Wang H, Xiao S et al (2016) Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids. Biotechnol Lett 38:1733–1738

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameeta RaviKumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khot, M., Katre, G., Zinjarde, S., RaviKumar, A. (2018). Single Cell Oils (SCOs) of Oleaginous Filamentous Fungi as a Renewable Feedstock: A Biodiesel Biorefinery Approach. In: Kumar, S., Dheeran, P., Taherzadeh, M., Khanal, S. (eds) Fungal Biorefineries. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-90379-8_8

Download citation

Publish with us

Policies and ethics