Skip to main content

Insights into Fungal Xylose Reductases and Its Application in Xylitol Production

  • Chapter
  • First Online:
Fungal Biorefineries

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Xylose reductase (EC 1.1.1.21), an aldo-keto reductase enzyme, catalyzes the conversion of xylose into xylitol. It is present in animals, plants, and many microorganisms. In microorganisms, in addition to its production by many fungal (yeasts and molds) cultures, a few members of bacteria such as Corynebacterium sp. and Enterobacter sp. have also been reported to produce NADPH-dependent xylose reductase (XR). In fungi, XR directly converts xylose into xylitol during the metabolism of xylose by using NADH and/or NADPH as coenzyme. The tetrad of amino acids (Tyr, His, Asp, and Lys) at catalytic site is responsible for XR activity. Several attempts have been made to improve XR production using recombinant DNA technology by introducing xylose reductase gene (xyl1) into different fungal strains from other microorganisms for efficient conversion of xylose to xylitol. Site-directed mutagenesis at the catalytic site is another approach to increase the turnover number and catalytic efficiency of XRs. Xylitol is a rare pentol sugar whose global market is increasing at a very fast pace due to its applications in food, cosmetic, odontological, pharmaceutical, and medical sector. The microbial production of xylitol is emerging as a good alternative due to abundance of agriculture waste material. The present chapter will describe the different aspects of fungal XRs including their structural characteristics, sources, production, purification and characterization, immobilization, patent status, and xylitol applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril JR, Stull JW, Taylor RR, Angus RC, Daniel TC (1982) Characteristics of frozen desserts sweetened with xylitol and fructose. Food Sci 47(2):472–475

    Article  Google Scholar 

  • Agrawal M, Chen RR (2011) Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33(11):2127–2133

    Article  PubMed  CAS  Google Scholar 

  • Aguiar C, Oetterer M, Menezes TJB (1999) Caracterizacao e aplicacoes do xylitol na industria alimenticia. Boletim SBCTA 33(2):184–193

    Google Scholar 

  • Ahmed YM, Ibrahim IH, Khan JA, Kumosani TA (2011) Oxidation and reduction of D-xylose by cell-free extract of Hansenula polymorpha. Aust J Basic Appl Sci 5(12):95–100

    CAS  Google Scholar 

  • Alexander NJ (1985) Temperature sensitivity of the induction ofxylose reductase in Pachysolen tannophilus. Biotechnol Bioeng 27(12):1739–1744

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV, Bell PJ (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6(6):862–868

    Article  PubMed  CAS  Google Scholar 

  • Banta S, Boston M, Jarnagin A, Anderson S (2002) Mathematical modeling of in vitro enzymatic production of 2-keto-L-gulonic acid using NAD(H) or NADP(H) as cofactors. Metab Eng 4(4):273–284

    Article  PubMed  CAS  Google Scholar 

  • Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bicho PA, Runnals PL, Cunningham JD, Lee H (1988) Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl Environ Microbiol 54(1):50–54

    PubMed  PubMed Central  CAS  Google Scholar 

  • Billard P, Menart S, Fleer R, Fukuhara MB (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162(1):93–97

    Article  PubMed  CAS  Google Scholar 

  • Biswas D, Pandya V, Singh AK, Mondal AK, Kumaran S (2012) Co-factor binding confers substrate specificity to xylose reductase from Debaryomyces hansenii. PLoS One 7(9):1–11

    Article  CAS  Google Scholar 

  • Bolen PL, Detroy RW (1985) Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose or D- galactose. Biotechnol Bioeng 27(3):302–307

    Article  PubMed  CAS  Google Scholar 

  • Bolen PL, Bietz JA, Detroy RW (1985) Aldose reductase in the yeast Pachysolen tannophilus: purification, characterization and N-terminal sequence. Biotechnol Bioeng Symp 15:129–148

    Google Scholar 

  • Bolen PL, Roth KA, Freer SN (1986) Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose fermenting yeast Pachysolen tannophilus. Appl Environ Microbiol 52(4):660–664

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boonmee A (2012) Hydrolysis of various Thai agricultural biomasses using the crude enzyme from Aspergillus aculeatusiizuka FR60 isolated from soil. Braz J Microbiol 43(2):456–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boontham W, Srisuk N, Kokaew K, Treeyoung P, Limtong S, Thamchaipenet A, Yurimoto H (2014) Xylitol production by thermotolerant methylotrophic yeast Ogataea siamensis and its xylose reductase gene (xyl1) cloning. Chiang Mai J Sci 41(3):491–502

    CAS  Google Scholar 

  • Branco RF, Santos JC, Pessoa A, Silva SS (2009) Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J Chem Technol Biotechnol 84(3):326–330

    Article  CAS  Google Scholar 

  • Branco RF, Santos JC, Silva SS (2011) A solid and robust model for xylitol enzymatic production optimization. J Bioproces Biotechniq 1(4):1–6

    Google Scholar 

  • Branden CI (1991) The TIM barrel- the most frequently occurring folding motif in proteins. Curr Opin Struct Biol 1(6):978–983

    Article  Google Scholar 

  • Brown CL, Graham SM, Cable BB, Ozer EA, Taft PJ, Zabner J (2004) Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope 114(11):2021–2024

    Article  PubMed  CAS  Google Scholar 

  • Bruinenberg PM, But PHM, Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19(4):256–260

    Article  CAS  Google Scholar 

  • Cauwenberge JE, Bolen PL, McCracken DA, Bothast RJ (1989) Effect of growth conditions on cofactor linked xylose reductase activity in Pachysolen tannophilus. Enzym Microb Technol 11(10):662–667

    Article  Google Scholar 

  • Chen RR, Agrawal M (2012) Industrial applications of a novel aldo/keto reductase of Zymomonas mobilis. US Patent 0,196,342, 2 Aug 2012

    Google Scholar 

  • Chi DL, Tut OK, Milgrom P (2014) Cluster-randomized xylitol toothpaste trial for early childhood caries prevention. J Dent Child (Chic) 81(1):27–32

    Google Scholar 

  • Clementine T, Yue CC, Xiaoling W, Marine P, Alex H, Larry M, Daniel W, Laetitia GD (2016) Maltitol and xylitol sweetened chewing gums could modulate salivary parameters involved in dental caries prevention. J Interdiscipl Med Dent Sci 4(2):1–8

    Article  Google Scholar 

  • Converti A, Perego P, Dominguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21(8):719–723

    Article  CAS  Google Scholar 

  • Cortez EV, Pessoa A, Felipe MGA, Roberto IC, Vitolo M (2006) Characterization of xylose reductase extracted by CTAB-reversed micelles from Candida guilliermondii homogenate. Braz J Pharm Sci 42(2):251–257

    CAS  Google Scholar 

  • Costanzo L, Penning TM, Christianson DW (2009) Aldo-keto reductases in which the conserved catalytic histidine is substituted. Chem Biol Interact 178(1–3):127–133

    Article  PubMed  CAS  Google Scholar 

  • Cunha MAA, Converti A, Santos JC, Silva SS (2006) Yeast immobilization in Lentikats: a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microbiol Biotechnol 22(1):65–72

    Article  CAS  Google Scholar 

  • Dahn KM, Davis BP, Pittman PE, Kenealy WR, Jeffries TW (1996) Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of xyl1. Appl Biochem Biotechnol 57-58:267–276

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta D, Ghosh D, Bandhu S, Agarwal D, Suman SK, Adhikari DK (2016) Purification, characterization and molecular docking study of NADPH dependent xylose reductase from thermotolerant Kluyveromyces sp. IIPE453. Process Biochem 51(1):124–133

    Article  CAS  Google Scholar 

  • Decker RT, Loveren C (2003) Sugars and dental caries. Am J Clin Nutr 78(l):881–892

    Article  Google Scholar 

  • Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32(3–4):199–224

    Article  Google Scholar 

  • Ditzelmuller G, Kubicek CP, Wohrer W, Rohr M (1984) Xylose metabolism in Pachysolen tannophilus purification and properties of xylose reductase. Can J Microbiol 30(11):1330–1336

    Article  Google Scholar 

  • Ellis EM (2002) Microbial aldo-keto reductases. FEMS Microbiol Lett 216(2):123–131

    Article  PubMed  CAS  Google Scholar 

  • Emodi A (1978) Xylitol: its properties and food applications. Food Technol 32:20–32

    Google Scholar 

  • Erdei B, Barta Z, Sipos B, Reczey K, Galbe M, Zacchi G (2010) Research ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels 3(1):1–9

    Article  CAS  Google Scholar 

  • Feldmann SD, Sahm H, Sprenger GA (1992) Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl Microbiol Biotechnol 38:354–361

    Article  CAS  Google Scholar 

  • Fernandes S, Tuohy MG, Murray PG (2009) Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of the native gene (TeXR) and a double mutant (TeXRK 271R + N273D) with altered coenzyme specificity. J Biosci 34(6):881–890

    Article  PubMed  CAS  Google Scholar 

  • Granstrom T, Aristidou AA, Leisola M (2002) Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab Eng 4(3):248–256

    Article  PubMed  CAS  Google Scholar 

  • Granstrom TB, Takata G, Tokuda M, Izumori K (2004) A novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97(2):89–94

    Article  PubMed  Google Scholar 

  • Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276

    Article  PubMed  CAS  Google Scholar 

  • Gross W, Seipold P, Schnarrenberger C (1997) Characterization and purification of an aldose reductase from the acidophilic and thermophilic red alga Galdieria sulphuraria. Plant Physiol 114(1):231–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101(5):1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Gurpilhares DB, Hasmann FA, Pessoa A, Roberto IC (2009) The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 36(1):87–93

    Article  PubMed  CAS  Google Scholar 

  • Hagerdal BH, Jeppsson H, Olsson L, Mohagheghi A (1994) An interlaboratory comparison of the performance of ethanol producing microorganisms in a xylose rich acid hydrolysate. Appl Microbiol Biotechnol 41(1):62–72

    Google Scholar 

  • Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahnhagrbdal B, Penttila M, Kerasnen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9(11):1090–1095

    Article  PubMed  CAS  Google Scholar 

  • Hallborn J, Penttila M, Ojamo H, Walfridsson M, Airaksinen U, Keranen S, Hagerdal BH (1999) Xylose utilization by recombinant yeasts. US Patent 5,866,382, 2 Feb 1999

    Google Scholar 

  • Handumrongkul C, Ma DP, Silva JL (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49(4):399–404

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Dashtban M, Kepka G, Chen S, Qin W (2014) Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of D-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. Biomed Res Int 2014:1–8

    Google Scholar 

  • Horitsu H, Yahashi Y, Takamizawa K, Kawai K, Suzuki T, Watanabe N (1992) Production of xylitol from D-xylose by Candida tropicalis: optimization of production rate. Biotechnol Bioeng 40(9):1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Hyatt MP, Lickteig AJ, Klaassen CD (2013) Tissue distribution, ontogeny and chemical induction of aldo-keto reductases in mice. Drug Metab Dispos 41(8):1480–1487

    Article  CAS  Google Scholar 

  • Hyvonen L, Slotte M (1983) Alternative sweetening of yoghurt. J Food Technol 18(1):97–112

    Article  Google Scholar 

  • Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35(1–2):191–198

    Article  PubMed  CAS  Google Scholar 

  • Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 130-132(1–3):499–525

    Article  PubMed  CAS  Google Scholar 

  • Kaneda J, Sasaki K, Gomi K, Shintani T (2011) Heterologous expression of Aspergillus oryzae xylose reductase and xylitol dehydrogenase genes facilitated xylose utilization in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 75(1):168–170

    Article  PubMed  CAS  Google Scholar 

  • Kapoor R, Metzger LE (2008) Process cheese: scientific and technological aspects: a review. Compr Rev Food Sci Food Saf 7(2):194–214

    Article  CAS  Google Scholar 

  • Karimi K, Kheradmandinia S, Taherzadeh MJ (2006) Conversion of rice straw to sugar by dilute acid hydrolysis. Biomass Bioenergy 30(3):247–253

    Article  CAS  Google Scholar 

  • Kauko K, Makinen KK (2010) Sugar alcohols, caries incidence and remineralization of caries lesions: a literature review. Int J Dent 2010:1–23

    Google Scholar 

  • Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2002) The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochem J 41(28):8785–8795

    Article  CAS  Google Scholar 

  • Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2003) Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373(2):319–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kern M, Nidetzky B, Kulbe KD, Haltrich D (1998) Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose fermenting yeast Candida tenuis. J Ferment Bioeng 85(2):196–202

    Article  CAS  Google Scholar 

  • Khoury GA, Fazelinia H, Chin JW, Pantazes RJ, Cirino PC, Maranas CD (2009) Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci 18(10):2125–2138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S, Kim J, Oh D (1997) Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J Ferment Bioeng 83(3):267–270

    Article  CAS  Google Scholar 

  • Kim MD, Jeun YS, Kim SG, Ryu YW, Seo JH (2002) Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring xyl1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzym Microb Technol 31(6):862–866

    Article  CAS  Google Scholar 

  • Kim SR, Park YC, Jin YS, Seo JH (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31(6):851–861

    Article  PubMed  CAS  Google Scholar 

  • Kinami Y, Kitagawa I (1969) Fluctuation of blood sugar, urine sugar and ketone body levels in surgical stress and application of xylitol. Shujutsu 23(11):1487–1491

    PubMed  CAS  Google Scholar 

  • Klimacek M, Szekely M, GrieMler R, Nidetzky B (2001) Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristic of two dehydrogenase/reductase family types. FEBS Lett 500(3):149–152

    Article  PubMed  CAS  Google Scholar 

  • Kogje A, Ghosalkar A (2016) Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech 6(2):1–10

    Article  Google Scholar 

  • Kokaew K, Srisuk N, Limtong S, Thamchaipenet A (2009) Cloning and nucleotide sequence analysis of xylose reductase (XR) gene from thermotolerant methylotrophic yeast Ogataea siamensis N22. Thai J Genet 2(1):66–71

    Google Scholar 

  • Kommineni A, Amamcharla J, Metzger LE (2012) Effect of xylitol on the functional properties of low-fat process cheese. J Dairy Sci 95(11):6252–6259

    Article  PubMed  CAS  Google Scholar 

  • Kuhn A, Zyl C, Tonder AV, Prior BA (1995) Purification and partial characterization of an aldo-keto-reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61(4):1580–1585

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Gummadi SN (2011) Purification and biochemical characterization of a moderately halotolerant NADPH dependent xylose reductase from Debaryomyces nepalensis NCYC 3413. Bioresour Technol 102(20):9710–9717

    Article  PubMed  CAS  Google Scholar 

  • Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in enzymatic hydrolysis of biomass. Enzym Microb Technol 5(2):82–102

    Article  CAS  Google Scholar 

  • Lakshmi SV, Yadav HKS, Mahesh KP, Raizaday A, Manne N, Ayaz A, Nagavarma NBV (2014) Medicated chewing gum: an overview. Res Rev J Dent Sci 2(2):50–64

    Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24

    Article  PubMed  CAS  Google Scholar 

  • Lee H (1998) The structure and function of yeast xylose (aldose) reductases. Yeast 14(11):977–984

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Sopher CR, Yau KYF (1996) Induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars in Candida guilliermondii. J Chem Technol Biotechnol 65(4):375–379

    Article  CAS  Google Scholar 

  • Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis and its functional expression in Candida tropicalis. Appl Environ Microbiol 69(10):6179–6188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llop MR, Jimeno FG, Acien RM, Dalmau LJB (2010) Effects of xylitol chewing gum on salivary flow rate, pH, buffering capacity and presence of Streptococcus mutans in saliva. Eur J Paediatr Dent 11(1):9–14

    Google Scholar 

  • Lourenco MVM, Andreote FD, Vildoso CIA, Basso LC (2014) Biotechnological potential of Candida sp. for the bioconversion of D-xylose to xylitol. Afr J Microbiol Res 8(20):2030–2036

    Article  CAS  Google Scholar 

  • Loveren C (2004) Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects? Caries Res 38(3):286–293

    Article  PubMed  CAS  Google Scholar 

  • Luccio E, Elling RA, Wilson DK (2006) Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies. Biochem J 400(1):105–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugani Y, Sooch BS (2017) Xylitol, an emerging prebiotic: a review. Int J Appl Pharm Biol Res 2(2):67–73

    Google Scholar 

  • Lugani Y, Oberoi S, Sooch BS (2017) Xylitol: a sugar substitute for patients of diabetes mellitus. World J Pharm Pharm Sci 6(4):741–749

    CAS  Google Scholar 

  • Lunzer R, Mamnun Y, Haltrich D, Kulbe KD, Nidetzky B (1998) Structural and functional properties of a yeast xylitol dehydrogenase, a Zn2+-containing metalloenzyme similar to medium-chain sorbitol dehydrogenases. Biochem J 336(1):91–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ly KA, Milgrom P, Rothen M (2006) Xylitol, sweeteners and dental caries. Pediatr Dent 28(2):154–163

    PubMed  Google Scholar 

  • Machiulskiene V, Nyvad B, Baelum V (2001) Caries preventive effect of sugar-substituted chewing gum. Community Dent Oral Epidemiol 29:278–288

    Article  PubMed  CAS  Google Scholar 

  • Makinen KK (1976) Possible mechanisms for the cariostatic effect of xylitol. In: Ritzel G, Brubacher G (eds) Monosaccharides and polyalcohols in nutrition, therapy and dietetics. Huber, Bern, pp 368–380

    Google Scholar 

  • Makinen KK (1992) Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. J Appl Nutr 44:16–28

    Google Scholar 

  • Makinen KK (2000) The rocky road of xylitol to its clinical application. J Dent Res 79(6):1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Makinen KK (2009) An end to crossover designs for studies on the effect of sugar substitutes on caries? Caries Res 43(5):331–333

    Article  PubMed  CAS  Google Scholar 

  • Makinen KK, Alanen P, Isokangas P, Isotupa K, Soderling E, Makinen PL, Wenhui W, Weijian W, Xiaochi C, Yi W, Boxue Z (2008) Thirty-nine-month xylitol chewing-gum programme in initially 8-year-old school children: a feasibility study focusing on mutans Streptococci and Lactobacilli. Int Dent J 58(1):41–50

    Article  PubMed  Google Scholar 

  • Markets and Markets (2016) Industrial enzymes market. http://www.marketsandmarkets.com/PressReleases/industrial-enzymes.asp. Accessed 21 April 2017

  • Mayerhoff ZDVL, Roberto IC, Franco TT (2004) Purification of xylose reductase from Candida mogii in aqueous two-phase systems. Biochem Eng J 18(3):217–223

    Article  CAS  Google Scholar 

  • Mayr P, Bruggler K, Kulbe KD, Nidetzky B (2000) D-xylose metabolism by Candida intermedia: isolation and characterization of two forms of aldose reductase with different coenzyme specificities. J Chromatogr B Biomed Sci Appl 737(1–2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Mayr P, Petschacher B, Nidetzky B (2003) Xylose reductase from the basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization and detailed analysis of the substrate binding pocket using structure-activity relationships. J Biochem 133(4):553–562

    Article  PubMed  CAS  Google Scholar 

  • Melaja J, Hamalainen L (1977) Process for making xylitol. US Patent 4008285, 15 Feb 1977

    Google Scholar 

  • Milessi TSS, Chandel AK, Branco RF, Silva SS (2011) Effect of dissolved oxygen and inoculum concentration on xylose reductase production from Candida guilliermondii using sugarcane bagasse hemicellulosic hydrolysate. Food Nutr Sci 2(3):235–240

    CAS  Google Scholar 

  • Moyses DN, Reis VC, Almeida JR, Moraes LM, Torres FA (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17(3):1–18

    Article  CAS  Google Scholar 

  • Mueller M, Wilkins MR, Banat IM (2011) Production of xylitol by the thermotolerant Kluyveromyces marxianus IMB strains. J Bioprocess Biotechniq 1(2):1–5

    Article  CAS  Google Scholar 

  • Nayak PA, Nayak UA, Khandelwal V (2014) The effect of xylitol on dental caries and oral flora. Clin Cosmet Investig Dent 6:89–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B (1997) NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Biochem J 326(3):683–692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nigam P, Singh D (1995) Processes for fermentative production of xylitol- a sugar substitute. Process Biochem 30(2):117–124

    CAS  Google Scholar 

  • Nyyssola A, Pihlajaniemi A, Palva A, Weymarn N, Leisola M (2005) Production of xylitol from D-xylose by recombinant Lactococcus lactis. J Biotechnol 118(1):55–66

    Article  PubMed  CAS  Google Scholar 

  • Parajo JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol Part 2: operation in culture media made with commercial sugars. Bioresour Technol 65(3):203–212

    Article  CAS  Google Scholar 

  • Pepper T, Olinger PM (1998) Xylitol in sugar-free confections. Food Technol 42:98–106

    Google Scholar 

  • Pereira AFF, Silva TC, Silva TL, Caldana ML, Baston JRM, Buzalaf MAR (2012) Xylitol concentrations in artificial saliva after application of different xylitol dental varnishes. J Appl Oral Sci 20(2):146–150

    Article  PubMed Central  CAS  Google Scholar 

  • Rafiqul ISM, Sakinah AMM (2012) A perspective: bioproduction of xylitol by enzyme technology and future prospects. Int Food Res J 19(2):405–408

    CAS  Google Scholar 

  • Rafiqul SM, Sakinah AM (2015) Biochemical properties of xylose reductase prepared from adapted strain of Candida tropicalis. Appl Biochem Biotechnol 175(1):387–399

    Article  PubMed  CAS  Google Scholar 

  • Rehman A, Gulfraz M, Raja GK, Haq MI, Anwar Z (2015) Comprehensive approach to utilize an agricultural pea peel (Pisum sativum) waste as a potential source for bio-ethanol production. Rom Biotechnol Lett 20(3):10422–10430

    CAS  Google Scholar 

  • Ronzon YC, Zaldo MZ, Lozano MLC, Uscanga MGA (2012) Preliminary characterization of xylose reductase partially purified by reversed micelles from Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain. Adv Chem Eng Sci 2(1):9–14

    Article  CAS  Google Scholar 

  • Rosa SMA, Felipe MGA, Silva SS, Vitolo M (1998) Xylose reductase production by Candida guilliermondii. Appl Biochem Biotechnol 70(72):127–135

    Article  Google Scholar 

  • Russo JR (1977) Xylitol: anti-carie sweetener? Food Eng 79:37–40

    Google Scholar 

  • Saha BC, Bothast RJ (1997) Microbial production of xylitol. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 307–319

    Chapter  Google Scholar 

  • Saha BC, Bothast RJ (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22(6):633–636

    Article  PubMed  CAS  Google Scholar 

  • Sattur AP, Rao KC, Babu KN, Soundar D, Karanth NG, Tumkur RS (2003) Aldose reductase inhibitor and process for preparation thereof. US Patent 0,134,399, 17 Jul 2003

    Google Scholar 

  • Scheie AA, Fejerskov O, Danielsen B (1998) The effects of xylitol containing chewing gums on dental plaque and acidogenic potential. J Dent Res 77:1547–1542

    Article  PubMed  CAS  Google Scholar 

  • Scheinin A, Makinen KK, Ylitalo K (1976) Turku sugar studies. V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol Scand 34(4):179–216

    Article  PubMed  CAS  Google Scholar 

  • Schneider H (1989) Conversion of pentoses to ethanol by yeasts and fungi. Crit Rev Biotechnol 9(1):1–40

    Article  PubMed  CAS  Google Scholar 

  • Sene L, Vitolo M, Felipe MGA, Silva SS (2000) Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii. Appl Biochem Biotechnol 84(1):371–380

    Article  PubMed  Google Scholar 

  • Sharma A (2014) Production of xylitol by catalytic hydrogenation of xylose. Pharm Innov 2(12):1–6

    Google Scholar 

  • Silva DDV, Felipe MGA (2006) Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81(7):1294–1300

    Article  CAS  Google Scholar 

  • Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from D-xylose. J Ferment Bioeng 80(6):565–570

    Article  CAS  Google Scholar 

  • Soderling EM (2009) Xylitol, mutans streptococci and dental plaque. Adv Dent Res 21(1):74–78

    Article  PubMed  CAS  Google Scholar 

  • Su Y, Li W, Zhu W, Yu R, Fei B, Wen T, Cao Y, Qiao D (2010) Characterization of xylose reductase from Candida tropicalis immobilized on chitosan bead. Afr J Biotechnol 9(31):4954–4965

    CAS  Google Scholar 

  • Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T, Yoshida T (1991) Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol 28-29:327–340

    Article  PubMed  CAS  Google Scholar 

  • Tamburini E, Bianchini E, Bruni A, Forlani G (2010) Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels and its consequence on xylitol production by Candida tropicalis. Enzym Microb Technol 46(5):352–359

    Article  CAS  Google Scholar 

  • Tomotani EJ, Arruda PVD, Vitolo M, Felipe MGA (2009) Obtaining partial purified xylose reductase from Candida guilliermondii. Braz J Microbiol 40(3):631–635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Twetman S (2009) Consistent evidence to support the use of xylitol and sorbitol containing chewing gum to prevent dental caries. Evid Based Dent 10(1):10–11

    Article  PubMed  Google Scholar 

  • Uhari M, Tapiainen T, Kontiokari T (2000) Xylitol in preventing acute otitis media. Vaccine 19(1):144–147

    Article  Google Scholar 

  • Vandeska E, Kuzmanova S, Jeffries TW (1995) Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. J Ferment Bioeng 80(5):513–516

    Article  CAS  Google Scholar 

  • Velazquez Pereda MDC, Polezel MA, Dieamant GC, Cecilia Nogueira C, Mussi L, Rossan MR, Carlos Correia RD, Camilo NS (2011) Xylitol esters and ethers applied as alternative emulsifier, solvents, co-emulsions and preservative systems for pharmaceutical and cosmetic products. US Patent 0,251,415, 13 Oct 2011

    Google Scholar 

  • Verduyn C, Jzn JF, Dijken JPV, Scheffers WA (1985a) Multiple forms of xylose reductase in Pachysolen tannophilus CBS4044. FEMS Microbiol Lett 30(3):313–317

    Article  CAS  Google Scholar 

  • Verduyn C, Kleef RV, Frank J, Schreuder H, Dijken JPV, Scheffers WA (1985b) Properties of the NAD(P)H-dependent xylose reductase from the xylose fermenting yeast Pichia stipitis. Biochem J 226(3):669–677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogl M, Kratzer R, Nidetzky B, Brecker L (2011) Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Org Biomol Chem 9(16):5863–5870

    Article  PubMed  CAS  Google Scholar 

  • Vongsuvanlert V, Tani Y (1988) Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose. Agric Biol Chem 52(7):1817–1824

    CAS  Google Scholar 

  • Webb SR, Lee H (1991) Inhibition of xylose reductase from the yeast Pichia stipitis. Appl Biochem Biotechnol 30:325–337

    Article  CAS  Google Scholar 

  • Woodyer R, Simurdiak M, Donk WA, Zhao HM (2005) Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol 71(3):1642–1647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova NN, Ginak AI (2003) Specific features of fermentation of D-xylose and D-glucose by xylose-assimilating yeasts. Appl Biochem Biotechnol 39(3):265–269

    CAS  Google Scholar 

  • Ye Q, Hyndman D, Green NC, Li L, Jia Z, Flynn TG (2001) The crystal structure of an aldehyde reductase Y50F mutant NADP complex and its implications for substrate binding. Chem Biol Interact 130-132(1–3):651–658

    Article  PubMed  CAS  Google Scholar 

  • Yin SY, Kim HJ, Kim HJ (2014) Protective effect of dietary xylitol on influenza: a virus infection. PLoS One 9(1):1–7

    Google Scholar 

  • Yokoyama S, Suzuki T, Kawai K, Horitsu H, Takamizawa K (1995) Purification, characterization and structure analysis of NADPH-dependent D-xylose reductases from Candida tropicalis. J Ferment Bioeng 79(3):217–223

    Article  CAS  Google Scholar 

  • Yoshitake J, Ohiwa H, Shimamura M, Imai T (1971) Production of polyalcohol by a Corynebacterium sp. Part I Production of pentitol from aldopentose. Agric Biol Chem 35(6):905–911

    CAS  Google Scholar 

  • Yoshitake J, Ishizaki H, Shimamura M, Imai T (1973) Xylitol production by an Enterobacter species. Agric Biol Chem 37(10):2261–2266

    Article  CAS  Google Scholar 

  • Zeid AAA, Fouly MZ, Zawahry YA, Mongy TM, Aziz ABA (2008) Bioconversion of rice straw xylose to xylitol by a local strain of Candida tropicalis. J Appl Sci Res 4(8):975–986

    CAS  Google Scholar 

  • Zhang F, Qiao D, Xu H, Lio C, Li S, Cao Y (2009) Cloning, expression and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47(3):351–357

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gao F, Zhang SP, Su ZG, Ma GH, Wang P (2011) Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle supported multi-enzyme system with in situ cofactor regeneration. Bioresour Technol 102(2):1837–1843

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Zhang J, Wang D, Gao X, Sun L, Hong J (2015a) Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Data Brief 5:179–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Jiang ST, Zheng Z, Li XJ, Luo SZ, Wu XF (2015b) Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae. J Basic Microbiol 55(7):907–921

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Nair NU (2010) Xylose reductase mutants and uses thereof. US Patent 0,291,645, 18 Nov 2010

    Google Scholar 

  • Zhao X, Gao P, Wang Z (1998) The production and properties of a new xylose reductase from fungus. Appl Biochem Biotechnol 70–72(1):405–414

    Article  PubMed  Google Scholar 

  • Zhao H, Woodyer R, Simurdiak M, Donk WA (2006) Highly active xylose reductase from Neurospora crass. US Patent 0,035,353, 16 Feb 2006

    Google Scholar 

  • Zhao H, Woodyer R, Simurdiak M, Donk WA (2008) Highly active xylose reductase from Neurospora crass. US Patent 7,381,553, 3 Jun 2008

    Google Scholar 

  • Zheng Y, Yu X, Li T, Xiong X, Chen S (2014) Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP -linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnol Biofuels 7(1):1–8

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology, Punjabi University, Patiala, India, for providing necessary facilities and also thankful to Bhai Kahn Singh Nabha Library of the university for providing access to scientific literature available with them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder Singh Sooch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lugani, Y., Sooch, B.S. (2018). Insights into Fungal Xylose Reductases and Its Application in Xylitol Production. In: Kumar, S., Dheeran, P., Taherzadeh, M., Khanal, S. (eds) Fungal Biorefineries. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-90379-8_7

Download citation

Publish with us

Policies and ethics