Skip to main content

Production of Biofuels from Biomass by Fungi

  • Chapter
  • First Online:
Fungal Biorefineries

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungal whole-cell biocatalysts have been used for the pre-treatment of lignocellulosic biomass, lignocellulosic ethanol fermentation, and enzymatic biodiesel production. Fungal whole cells or enzymes bound to whole-cell membrane have significantly reduced the production costs of biocatalysts while also increasing the reusability of biocatalysts. Various strategies based on the advances in genomics and genetic engineering have been developed to improve the biocatalysis efficiency. Genetic engineering of the fungal cells and enzymes via directed evolution has significantly increased the yields and productivity of biofuels in biological processes. Future research on the use of fungal whole-cell biocatalysts can lead to a more sustainable production of biofuels, biodiesel, and other value-added bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarthy M, Saravanan P, Gowthaman MK, Rose C, Kamini NR (2014) Enzymatic transesterification for production of biodiesel using yeast lipases: an overview. Chem Eng Res Des 92(8):1591–1601

    Article  CAS  Google Scholar 

  • Aguieiras ECG, Cavalcanti-Oliveira ED, de Castro AM, Langone MAP, Freire DMG (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321

    Article  CAS  Google Scholar 

  • Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67

    Article  CAS  Google Scholar 

  • Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Biorefin 1(1):57–66

    Article  CAS  Google Scholar 

  • Amore A, Faraco V (2012) Potential of fungi as category I consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sust Energ Rev 16(5):3286–3301

    Article  CAS  Google Scholar 

  • Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152(1):16–23

    Article  PubMed  CAS  Google Scholar 

  • Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35(5):355–366

    Article  PubMed  CAS  Google Scholar 

  • Asial I, Cheng YX, Engman H, Dollhopf M, Wu B, Nordlund P, Cornvik T (2013) Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat Commun 4:2901

    Article  PubMed  CAS  Google Scholar 

  • Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62(1):9–14

    Article  CAS  Google Scholar 

  • Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8(1):39–43

    Article  PubMed  CAS  Google Scholar 

  • Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B Enzym 17(3–5):157–165

    Article  CAS  Google Scholar 

  • Bari MN, Alam MZ, Muyibi SA, Jamal P (2009) Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs. Bioresour Technol 100(12):3113–3120

    Article  PubMed  CAS  Google Scholar 

  • Barrington S, Kim JS, Wang L, Kim J-W (2009) Optimization of citric acid production by Aspergillus niger NRRL 567 grown in a column bioreactor. Korean J Chem Eng 26(2):422–427

    Article  CAS  Google Scholar 

  • Betiku E, Emeko HA, Solomon BO (2016) Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice. Heliyon 2(2):e00082

    Article  PubMed  PubMed Central  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    Article  PubMed  CAS  Google Scholar 

  • Brijwani K, Vadlani PV, Hohn KL, Maier DE (2011) Experimental and theoretical analysis of a novel deep-bed solid-state bioreactor for cellulolytic enzymes production. Biochem Eng J 58:110–123

    Article  CAS  Google Scholar 

  • Canet A, Dolors Benaiges M, Valero F (2014) Biodiesel synthesis in a solvent-free system by recombinant Rhizopus oryzae lipase. Study of the catalytic reaction progress. J Am Oil Chem Soc 91(9):1499–1506

    Article  CAS  Google Scholar 

  • Cesarini S, Diaz P, Nielsen PM (2013) Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock. Process Biochem 48(3):484–487

    Article  CAS  Google Scholar 

  • Chakiath C, Lyons MJ, Kozak RE, Laufer CS (2009) Thermal stabilization of Erwinia chrysanthemi pectin Methylesterase a for application in a sugar beet pulp biorefinery. Appl Environ Microbiol 75(23):7343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H (2013) Modern solid state fermentation. Springer, Netherlands

    Book  Google Scholar 

  • Chen H-Z, Xu J, Li Z-H (2005) Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochem Eng J 23(2):117–122

    Article  CAS  Google Scholar 

  • Chen X, Du W, Liu D (2008) Effect of several factors on soluble lipase-mediated biodiesel preparation in the biphasic aqueous-oil systems. World J Microbiol Biotechnol 24(10):2097–2102

    Article  CAS  Google Scholar 

  • Cobb RE, Si T, Zhao H (2012) Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol 16(3–4):285–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Contesini FJ, Lopes DB, Macedo GA, Nascimento M d G, Carvalho P d O (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67(3–4):163–171

    Article  CAS  Google Scholar 

  • Couto SR, Sanromán MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J 22(3):211–219

    Article  CAS  Google Scholar 

  • Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76(3):291–302

    Article  CAS  Google Scholar 

  • Deacon J (2005) Fungal Biology. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Denard CA, Ren H, Zhao H (2015) Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 25:55–64

    Article  PubMed  CAS  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2013) Rheological studies during submerged citric acid fermentation by Aspergillus Niger in stirred fermentor using apple pomace ultrafiltration sludge. Food Bioprocess Technol 6(5):1240–1250

    Article  CAS  Google Scholar 

  • Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei11Edited by K. Nagai. J Mol Biol 275(2):309–325

    Article  PubMed  CAS  Google Scholar 

  • Dizge N, Keskinler B, Tanriseven A (2009) Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene–divinylbenzene copolymer. Biochem Eng J 44(2–3):220–225

    Article  CAS  Google Scholar 

  • Dogaris I, Gkounta O, Mamma D, Kekos D (2012) Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl Microbiol Biotechnol 95(2):541–550

    Article  PubMed  CAS  Google Scholar 

  • Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13(2):113–125

    Article  CAS  Google Scholar 

  • EIA, U. S. E. I. A (2017) EIA U.S. Energy Information Administration, Online: https://www.eia.gov/

  • Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472(7344):499–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fazenda ML, Seviour R, McNeil B, Harvey LM (2008) Submerged culture fermentation of “higher fungi”: the macrofungi. Adv Appl Microbiol 63:33–103

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Arrojo L, Guazzaroni ME, Lopez-Cortes N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62(3–4):197–212

    Article  CAS  Google Scholar 

  • Ferreira JA, Lennartsson PR, Taherzadeh MJ (2015) Production of ethanol and biomass from thin stillage by Neurospora intermedia: a pilot study for process diversification. Eng Life Sci 15(8):751–759

    Article  CAS  Google Scholar 

  • Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ (2016) Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour Technol 215:334–345

    Article  PubMed  CAS  Google Scholar 

  • Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315

    Article  PubMed  CAS  Google Scholar 

  • Forti L, Di Mauro S, Cramarossa MR, Filippucci S, Turchetti B, Buzzini P (2015) Non-conventional yeasts whole cells as efficient biocatalysts for the production of flavors and fragrances. Molecules 20(6):10377–10398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26(12):668–673

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Galan C, Barbosa O, Hernandez K, Santos CJ, Rodrigues CR, Fernandez-Lafuente R (2014) Evaluation of styrene-divinylbenzene beads as a support to immobilize lipases. Molecules 19(6):7629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1):17–48

    Article  PubMed  CAS  Google Scholar 

  • Haakana H, Miettinen-Oinonen A, Joutsjoki V, Mäntylä A, Suominen P, Vehmaanperä J (2004) Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzym Microb Technol 34(2):159–167

    Article  CAS  Google Scholar 

  • Haas M, Foglia T, Piazza G (2002) Enzymatic approaches to the production of biodiesel fuels. Lipid Biotechnology, CRC Press

    Google Scholar 

  • Hama S, Yamaji H, Kaieda M, Oda M, Kondo A, Fukuda H (2004) Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem Eng J 21(2):155–160

    Article  CAS  Google Scholar 

  • Hamed SAM (2013) In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. Int Biodeter Biodegr 78(Supplement C):98–102

    Article  CAS  Google Scholar 

  • Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic [beta]-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161(1–8):301–312

    Article  PubMed  CAS  Google Scholar 

  • Hatzinikolaou DG, Kourentzi E, Stamatis H, Christakopoulos P, Kolisis FN, Kekos D, Macris BJ (1999) A novel lipolytic activity of Rhodotorula glutinis cells: Production, partial characterization and application in the synthesis of esters. J Biosci Bioeng 88(1):53–56

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Han S, Han Z, Lin Y (2012) Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichia pastoris whole cells in an isooctane system. Biochem Eng J 63:10–14

    Article  CAS  Google Scholar 

  • Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9(2):174–180

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103(3):273–280

    Article  PubMed  CAS  Google Scholar 

  • Jabasingh SA, Nachiyar CV (2011) Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Ind Crop Prod 34(3):1564–1571

    Article  CAS  Google Scholar 

  • Johannes TW, Zhao H (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9(3):261–267

    Article  PubMed  CAS  Google Scholar 

  • Kaieda M, Samukawa T, Kondo A, Fukuda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91(1):12–15

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Yoshitake K, Itakura S, Tanaka H, Enoki A (2005) Relationship between production of hydroxyl radicals and degradation of wood, crystalline cellulose, and a lignin-related compound or accumulation of oxalic acid in cultures of brown-rot fungi. J Wood Sci 51(3):262–269

    Article  CAS  Google Scholar 

  • Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105(1–3):27–41

    Article  PubMed  Google Scholar 

  • Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kumari A, Gupta R (2012) Purification and biochemical characterization of a novel magnesium dependent lipase from Trichosporon asahii MSR 54 and its application in biodiesel production. Asian J Biotechnol 4(2):70–82

    Article  CAS  Google Scholar 

  • Kuo C-H, Peng L-T, Kan S-C, Liu Y-C, Shieh C-J (2013) Lipase-immobilized biocatalytic membranes for biodiesel production. Bioresour Technol 145:229–232

    Article  PubMed  CAS  Google Scholar 

  • Leisola M, Turunen O (2007) Protein engineering: opportunities and challenges. Applied Microbiology & Biotechnology 75(6):1225–1232

    Article  CAS  Google Scholar 

  • Li N, Zong M-H (2010) Lipases from the genus penicillium: production, purification, characterization and applications. J Mol Catal B Enzym 66(1–2):43–54

    Article  CAS  Google Scholar 

  • Liang J, Luo Y, Zhao H (2011) Synthetic biology: putting synthesis into biology. Wiley Interdiscip Rev Syst Biol Med 3(1):7–20

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xiong Y, Huang W, Jia B (2014) Recurrent paratyphoid fever a co-infected with hepatitis a reactivated chronic hepatitis B. Ann Clin Microbiol Antimicrob 13(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutz S (2010) Beyond directed evolution – semi-rational protein engineering and design. Curr Opin Biotechnol 21(6):734–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553

    Article  PubMed  CAS  Google Scholar 

  • Martinez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Intern Microbiol 8:195–204

    CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  PubMed  Google Scholar 

  • Mitchell DA, Krieger N, BeroviˇC M (2006) Solid-state fermentation bioreactors. Springer, Heidelberg, p 19

    Book  Google Scholar 

  • Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, Ladisch MR (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125(2):77–97

    Article  PubMed  CAS  Google Scholar 

  • Nair RB, Lundin M, Brandberg T, Lennartsson PR, Taherzadeh MJ (2015) Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind Crop Prod 69:314–323

    Article  CAS  Google Scholar 

  • Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y (2009) Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol 83(4):649–657

    Article  PubMed  CAS  Google Scholar 

  • Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung M-h, Fukuda H, Kondo A (2006) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70(5):564–572

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110(8):692–700

    Article  CAS  Google Scholar 

  • Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E, Fukuda H (2005) Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem Eng J 23(1):45–51

    Article  CAS  Google Scholar 

  • Pandey A (2001) Solid-state fermentation in biotechnology: fundamentals and applications. Asiatech Publishers, New Delhi

    Google Scholar 

  • Pandey A, Höfer R, Taherzadeh M, Nampoothiri M, Larroche C (2015) Industrial Biorefineries & White Biotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13(2):127–135

    Article  CAS  Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99(10):3975–3981

    Article  PubMed  CAS  Google Scholar 

  • Ray MJ, Leak DJ, Spanu PD, Murphy RJ (2010) Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy 34(8):1257–1262

    Article  CAS  Google Scholar 

  • RFA (2017) Renewable Fuels Association, Online: http://www.ethanolrfa.org.

  • Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal B Enzym 66(1–2):15–32

    Article  CAS  Google Scholar 

  • Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research Journal 2(1):152–195

    Article  Google Scholar 

  • Séverac E, Galy O, Turon F, Pantel CA, Condoret J-S, Monsan P, Marty A (2011) Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact. Enzym Microb Technol 48(1):61–70

    Article  CAS  Google Scholar 

  • Sharma RK, Arora DS (2015) Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit Rev Microbiol 41(1):52–60

    Article  PubMed  CAS  Google Scholar 

  • Shiraga S, Kawakami M, Ishiguro M, Ueda M (2005) Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents. Appl Environ Microbiol 71(8):4335–4338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrestha P, Rasmussen M, Khanal SK, Pometto AL 3rd, van Leeuwen JH (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56(11):3918–3924

    Article  PubMed  CAS  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549

    Article  CAS  Google Scholar 

  • Song L, Laguerre S, Dumon C, Bozonnet S, O'Donohue MJ (2010) A high-throughput screening system for the evaluation of biomass-hydrolyzing glycoside hydrolases. Bioresour Technol 101(21):8237–8243

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 06(01)

    Google Scholar 

  • Srimhan P, Kongnum K, Taweerodjanakarn S, Hongpattarakere T (2011) Selection of lipase producing yeasts for methanol-tolerant biocatalyst as whole cell application for palm-oil transesterification. Enzym Microb Technol 48(3):293–298

    Article  CAS  Google Scholar 

  • Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3:480–486

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Tamalampudi S, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39(1):185–189

    Article  CAS  Google Scholar 

  • Tan KT, Gui MM, Lee KT, Mohamed AR (2010) An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. J Supercrit Fluids 53(1):82–87

    Article  CAS  Google Scholar 

  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643

    Article  PubMed  CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym 9(4–6):113–148

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Wang X-J, Peng Y-J, Zhang L-Q, Li A-N, Li D-C (2012a) Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl Microbiol Biotechnol 95(6):1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Si T, Zhao H (2012b) Biocatalyst development by directed evolution. Bioresour Technol 115C:117–125

    PubMed Central  Google Scholar 

  • Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20(4):412–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu I, Arnold FH (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng 110(7):1874

    Article  PubMed  CAS  Google Scholar 

  • Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2(1):1

    Article  CAS  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Factories 9:32

    Article  CAS  Google Scholar 

  • Yan J, Li A, Xu Y, Ngo TPN, Phua S, Li Z (2012) Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases. Bioresour Technol 123:332–337

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Li X, Wang G, Gui X, Li G, Su F, Wang X, Liu T (2014) Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy 113:1614–1631

    Article  CAS  Google Scholar 

  • Yu H, Guo G, Zhang X, Yan K, Xu C (2009a) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100(21):5170–5175

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Zhang J, He J, Liu Z, Yu Z (2009b) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100(2):903–908

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

  • Zhang X, Yu H, Huang H, Liu Y (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60(3):159–164

    Article  CAS  Google Scholar 

  • Zhang Z, Qu Y, Zhang X, Lin J (2008) Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3. 1602. Appl Biochem Biotechnol 145(1–3):39–51

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, El-Zahab B, Brosnahan R, Perry J, Wang P (2007) An organic soluble lipase for water-free synthesis of biodiesel. Appl Biochem Biotechnol 143(3):236–243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grant Number NC.X2013-38821-21141 and NC.X-294-5-15-130-1 from the US Department of Agriculture (USDA-NIFA). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, G., Wang, L. (2018). Production of Biofuels from Biomass by Fungi. In: Kumar, S., Dheeran, P., Taherzadeh, M., Khanal, S. (eds) Fungal Biorefineries. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-90379-8_2

Download citation

Publish with us

Policies and ethics