Skip to main content

Nanoparticle-Based High-k Dielectric Composites: Opportunities and Challenges

  • Chapter
  • First Online:
Nanopackaging
  • 1983 Accesses

Abstract

Nowadays high-k dielectrics are one of the very important materials for capacitors in modern electronics, requiring miniaturization, high performance, and very good stability and functionality, with simultaneous low cost of processing and materials. Usually it is impossible to satisfy all requirements simultaneously; however, different properties can be achieved by application of various technologies, suitable for specified field of application. Thanks to introduction of nanoparticles into composite dielectric material, superior properties can be obtained in comparison to dielectric based on micrometer-sized particles. In this chapter, research and development on high-k polymer for embedded capacitor applications are reviewed and discussed. More specifically, current research efforts toward achieving high-k and low dielectric loss nanoparticle-based dielectric composites are presented. Properties and the long-term stability of capacitors built into PCBs are described. High-k nanocrystalline thin-film layers prepared in various methods are also presented. Brief descriptions of thick-film and ceramic high-k materials with very good reliability and extended operation temperature are included too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulrich RK, Schaper LW (2003) Integrated passive component technology. IEEE Press, Wiley-Interscience, Hoboken

    Book  Google Scholar 

  2. Prymark J, Bhattacharya S, Paik K, Tummala RR (2001) Fundamentals of microsystems packaging. McGraw-Hill, New York

    Google Scholar 

  3. Gregorio R, Cestari M, Bernardino FE (1996) Dielectric behavior of thin films of beta-PVDF/PZT and beta-PVDF/BaTiO3 composites. J Mater Sci 31:2925–2930

    Article  CAS  Google Scholar 

  4. Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM (2000) High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 76:3804–3806

    Article  CAS  Google Scholar 

  5. Blythe AR (1979) Electrical properties of polymers. Cambridge University Press, Cambridge

    Google Scholar 

  6. Shaffer JP, Saxena A, Antolovich SD, Sanders THJ, Warner SB (1999) The science and design of engineering materials. McGraw-Hill, Boston

    Google Scholar 

  7. Tohge N, Takahashi S, Minami T (1991) Preparation of PbZrO3-PbTiO3 ferroelectric thin films by the sol-gel process. J Am Ceram Soc 74(1):67–71

    Article  CAS  Google Scholar 

  8. Mazur K (1995) In: Nalwa HS (ed) Polymer-ferroelectric ceramic composites in ferroelectric polymers: chemistry, physics, and applications. Marcel Dekker, New York

    Google Scholar 

  9. Dasgupta DK, Doughty K (1988) Polymer-ceramic composite materials with high dielectric constants. Thin Solid Films 158:93–105

    Article  CAS  Google Scholar 

  10. Liang S, Chong S, Giannelis E (1998) Barium titanate/epoxy composite dielectric materials for integrated thin film capacitors. In: Proceedings of 48th electronic components and technology conference, pp 171–175

    Google Scholar 

  11. Windlass H, Raj PM, Balaraman D, Bhattacharya SK, Tummala RR (2001) Processing of polymer-ceramic nanocomposites for system-on-package applications. In: Proceedings of 51st electronic components and technology conference, pp 1201–1206

    Google Scholar 

  12. Rao Y, Ogitani S, Kohl P, Wong CP (2002) Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. J Appl Polym Sci 83:1084–1090

    Article  CAS  Google Scholar 

  13. Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15:1625–1629

    Article  CAS  Google Scholar 

  14. Cho SD, Lee JY, Hyun JG, Paik KW (2004) Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications. Mater Sci Eng B 110(3):233–239

    Article  Google Scholar 

  15. Zhang QM, Bharti V, Zhao X (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280:2101–2104

    Article  CAS  Google Scholar 

  16. Rao Y, Wong CP (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J Appl Polym Sci 92:2228–2231

    Article  CAS  Google Scholar 

  17. Rao Y, Wong CP, Xu J (2005) Ultra high k polymer metal composite for embedded capacitor application. US Patent 6864306

    Google Scholar 

  18. Efros AL, Shklovskii BI (1976) Critical behavior of conductivity and dielectric constant near the metal-non-metal transition threshold. Phys Status Solidi B 76:475–485

    Article  CAS  Google Scholar 

  19. Qi L, Lee BI, Chen S, Samuels WD, Exarhos GJ (2005) High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv Mater 17:1777–1781

    Article  CAS  Google Scholar 

  20. Lu J, Moon KS, Xu J, Wong CP (2006) Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J Mater Chem 16(16):1543–1548

    Article  CAS  Google Scholar 

  21. Xu J, Wong CP (2005) Low loss percolative dielectric composite. Appl Phys Lett 87:082907

    Article  Google Scholar 

  22. Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 81:4814–4816

    Article  CAS  Google Scholar 

  23. Choi HW, Heo YW, Lee JH, Kim JJ, Lee HY, Park ET, Chung YK (2006) Effects of BaTiO3 on dielectric behavior of BaTiO3-Ni-polymethyl-methacrylate composites. Appl Phys Lett 89:132910

    Article  Google Scholar 

  24. Xu J, Wong CP (2004) Super high dielectric constant carbon black-filled polymer composites as integral capacitor dielectrics. In: Proceedings of 54th IEEE electronic components and technology conference, Las Vegas, pp 536–541

    Google Scholar 

  25. Dang Z, Nan C, Xie D, Zhang Y, Tjong SC (2004) Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Appl Phys Lett 85(1):97–99

    Article  CAS  Google Scholar 

  26. Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. Wiley, Hoboken

    Google Scholar 

  27. Uchino K, Sadanaga E, Hirose T (1989) Dependence of the crystal-structure on particle-size in BaTiO3. J Am Ceram Soc 72:1555–1558

    Article  CAS  Google Scholar 

  28. Leonard MR, Safari A (1996) Crystallite and grain size effects in BaTiO3. In: Proceedings of 10th international symposium on ferroelectric applications, 2. pp 1003–1005

    Google Scholar 

  29. Abothu IR, Lee BW, Raj PM, Engin E, Muthana P, Yoon CK, Swaminathan M, Tummala RR (2006) Tailoring the temperature coefficient of capacitance (TCC), dielectric loss and capacitance density with ceramic-polymer nanocomposites for RF applications. In: Proceedings of electronic components and technology conference, pp 1790–1794

    Google Scholar 

  30. Raj PM, Chakraborti P, Mishra D, Sharma H, Gandhi S, Sitaraman S, Tummala R (2015) Novel nanostructured passives for RF and power applications: nanopackaging with passive components. In: Nanopackaging: from nanomaterials to the atomic scale, Springer International Publishing, Cham, pp 175–189

    Chapter  Google Scholar 

  31. Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, Xu HS, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419:284–287

    Article  CAS  Google Scholar 

  32. Wang J, Shen Q, Yang C, Zhang Q (2004) High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligmer. Macromolecules 37:2294–2298

    Article  CAS  Google Scholar 

  33. Lu J, Moon KS, Wong CP (2006) Development of novel silver nanoparticles/polymer composites as high k polymer matrix by in-situ photochemical method. In: Proceedings of the 56th electronic components and technology conference, San Diego, pp 1841–1846

    Google Scholar 

  34. Lu J, Moon KS, Wong CP (2008) Silver/polymer nanocomposite as a high-k polymer matrix for dielectric composites with improved dielectric performance. J Mater Chem 18:4821–4826

    Article  CAS  Google Scholar 

  35. Lu J, Wong CP (2007) Tailored dielectric properties of high-k polymer composites via nanoparticle surface modification for embedded passives applications. In: Proceedings of 57th electronic components and technology conference, Reno, pp 1033–1039

    Google Scholar 

  36. Dziedzic A, Kłossowicz A, Winiarski P, Stadler AW, Stęplewski W (2014) Chosen electrical, noise and stability characteristics of passive components embedded in printed circuit boards. In: Proceedings of 5th electronics system-integration technology conference, Helsinki (8 pages)

    Google Scholar 

  37. Kłossowicz A, Winiarski P, Zawierta M, Stęplewski W, Dziedzic A (2014) Analysis of long-term stability of capacitors embedded in printed circuit boards. In: Proceedings of 37th international spring seminar on electronics (ISSE), pp 474–479

    Google Scholar 

  38. Lee KJ, Bhattacharya S, Varadarajan M, Wan L, Abothu IR, Sundaram V, Muthana P, Balaraman D, Raj PM, Swaminathan M, Sitaraman S, Tummala R, Viswanadham P, Dunford S, Lauffer J (2005) Design, fabrication and reliability assessment of embedded resistors and capacitors on multilayered organic substrates. In: Proceedings of international symposium on advanced packaging materials: processes, properties and interfaces, pp 249–254. 2005

    Google Scholar 

  39. Alam MA, Azarian MH, Osterman M, Pecht M (2011) Temperature and voltage ageing effects on electrical conduction mechanism in epoxy-BaTiO3 composite dielectric used in embedded capacitors. Microelectron Reliab 51:946–952

    Article  CAS  Google Scholar 

  40. Dziedzic A, Świetlik T, Winiarski P (2015) Low-temperature properties of capacitors embedded into Printed Circuit Boards. In: Proceedings of 38th international spring seminar on electronics technology (ISSE), Eger, pp 541–546

    Google Scholar 

  41. Alam MA, Azarian MH, Osterman M, Pecht M (2012) Accelerated temperature and voltage stress tests of embedded planar capacitors with epoxy–BaTiO3 composite dielectric. J Electron Packag 134:021009 (8 pages)

    Google Scholar 

  42. Alam MA, Azarian MH, Pecht M (2012) Effects of moisture absorption on the electrical parameters of embedded capacitors with epoxy-BaTiO3 nanocomposite dielectric. J Mater Sci Mater Electron 23:1504–1510

    Article  CAS  Google Scholar 

  43. Imanaka Y, Amada H, Kumasaka F (2011) Microstructure and dielectric properties of composite films for embedded capacitor applications. Int J Appl Ceram Technol 8:653–657

    Article  CAS  Google Scholar 

  44. Kim Y, Kim H, Koh J, Ha J, Yun Y, Nam S (2011) Fabrication of BaTiO3-PTFE composite film for embedded capacitor employing aerosol deposition. Ceram Int 37:1859–1864

    Article  CAS  Google Scholar 

  45. Imanaka Y, Akedo J (2010) Embedded capacitor technology using aerosol deposition. Int J Appl Ceram Technol 7:E23–E32

    Article  Google Scholar 

  46. Yang S, Kim H, Pawar RC, Ahn SH, Lee CS (2015) Dielectric characteristics of a barium titanate film deposited by Nano Particle Deposition System (NPDS). Int J Precis Eng Manuf 16:1029–1034

    Article  Google Scholar 

  47. Balaraman D, Raj PM, Wan L, Abothu IR, Bhattacharya S, Dalmia S, Lance MJ, Swaminathan M, Sacks MD, Tummala RR (2004) BaTiO3 films by low-temperature hydrothermal techniques for next generation packaging applications. J Electroceram 13:95–100

    Article  CAS  Google Scholar 

  48. Tan CK, Goh GKL, Chi DZ, Lu ACW, Lok BK (2006) Hydrothermal growth of BaTiO3 thin films on printed circuit boards for integral capacitor applications. J Electroceram 16:581–585

    Article  CAS  Google Scholar 

  49. Park JH, Xian CJ, Seong NJ, Yoon SG, Son SH, Chung HM, Moon JS, Jin HJ, Lee SE, Lee JW, Kang HD, Chung YK, Oh YS (2007) Development of embedded capacitor with bismuth-based pyrochlore thin films at low temperatures for printed circuit board applications. Microelectron Reliab 47:755–758

    Article  CAS  Google Scholar 

  50. Zhang X, Ren W, Shi P, Khan MS, Chen X, Wu X, Yao X (2012) Preparation and electrical properties of Bi2Zn2/3Nb4/3O7 thin films deposited at room temperature for embedded capacitor applications. Ceram Int 38:S73–S77

    Article  CAS  Google Scholar 

  51. Maria JP, Cheek K, Streiffer S, Kim SH, Dunn G, Kingon A (2001) Lead zirconate titanate thin films on base-metal foils: an approach for embedded high-permittivity passive components. J Am Ceram Soc 84:2436–2438

    Article  CAS  Google Scholar 

  52. Kim T, Kingon AI, Maria JP, Crosswell RT (2007) Lead zirconate titanate thin film capacitors on electroless nickel coated copper foils for embedded passive applications. Thin Solid Films 515:7331–7336

    Article  CAS  Google Scholar 

  53. Miś E, Dziedzic A, Nitsch K (2009) Electrical properties and electrical equivalent models of thick-film and LTCC microcapacitors. Microelectron Int 26(2):45–50

    Article  Google Scholar 

  54. Miś E, Dziedzic A, Piasecki T, Kita J, Moos R (2008) Geometrical, electrical and stability properties of thick-film and LTCC microcapacitors. Microelectron Int 25(2):37–41

    Article  Google Scholar 

  55. Bartsch H, Barth S, Müller J (2012) Embedded ceramic capacitors in LTCC. In: Proceedings of IMAPS/ACerS 8th international CICMT conference and exhibition, Erfurt, pp 464–468

    Google Scholar 

  56. Liu DD, Sampson MJ (2012) Some aspects of the failure mechanisms in BaTiO3-based multilayer ceramic capacitors. Capacitors and Resistors Technology Symposium (CARTS) International, Las Vegas

    Google Scholar 

  57. Bartsch H, Grieseler R, Muller J, Barth S, Pawlowski B (2010) Properties of high-k materials embedded in low temperature co-fired ceramics. In: Proceedings of 3rd electronics system integration technology conference, Berlin, pp 1–5

    Google Scholar 

  58. Lee K (2015) Characterization of LiF/CuO-codoped BaTiO3 for embedded capacitors. J Electron Mater 44:797–803

    Article  CAS  Google Scholar 

  59. Löhnert R, Capraro B, Barth S, Bartsch H, Müller J, Töpfer J (2015) Integration of CaCu3Ti4O12 capacitors into LTCC multilayer modules. J Eur Ceram Soc 35:3043–3049

    Article  Google Scholar 

  60. Shao SF, Zhang JL, Zheng P, Zhong WL, Wang CL (2006) Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J Appl Phys 99:084106

    Article  Google Scholar 

  61. Szwagierczak D, Kulawik J, Synkiewicz B, Skwarek A (2016) Multilayer capacitors with bismuth copper tantalate dielectric fabricated in LTCC technology. Microelectron Int 33(3):118–123

    Article  Google Scholar 

  62. Zang J, Jo W, Zhang H, Rödel J (2014) Bi1/2Na1/2TiO3–BaTiO3 based thick-film capacitors for high-temperature applications. J Eur Ceram Soc 34:37–43

    Article  CAS  Google Scholar 

  63. Cheng H, Zhou W, Du H, Luo F, Wang W (2015) Microstructure and dielectric properties of (K0.5Na0.5)NbO3–Bi(Zn2/3Nb1/3)O3 – x mol%CeO2 lead-free ceramics for high temperature capacitor applications. J Mater Sci Mater Electron 26:9097–9106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dabrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dabrowski, A., Dziedzic, A., Lu, J., Wong, C.P. (2018). Nanoparticle-Based High-k Dielectric Composites: Opportunities and Challenges. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_8

Download citation

Publish with us

Policies and ethics