Skip to main content

Advances in Delamination Modeling of Metal/Polymer Systems: Continuum Aspects

  • Chapter
  • First Online:
Nanopackaging

Abstract

Adhesion and delamination have been pervasive problems hampering the performance and reliability of micro- and nano-electronic devices. In order to understand, predict, and ultimately prevent interface failure in electronic devices, development of accurate, robust, and efficient delamination testing and prediction methods is crucial. Adhesion is essentially a multi-scale phenomenon: at the smallest scale possible, it is defined by the thermodynamic work of adhesion. At larger scales, additional dissipative mechanisms may be active which results in enhanced adhesion at the macroscopic scale and are the main cause for the mode angle dependency of the interface toughness. Undoubtedly, the macroscopic adhesion properties are a complex function of all dissipation mechanisms across the scales. Thorough understanding of the significance of each of these dissipative mechanisms is of utmost importance in order to establish physically correct, unambiguous values of the adhesion properties, which can only be achieved by proper multi-scale techniques.

The topic “Advances in Delamination Modeling” has been split into two separate chapters: this chapter discusses the continuum aspects of delamination, while the next chapter deals with the atomistic aspects of interface separation. The chapter starts with a concise overview of the theory on interface fracture mechanics, followed by five applications: (1) buckling-driven delamination in flexible displays, in which a combined numerical-experimental approach is used to establish macroscopic adhesion properties, as a function of mode angle; (2) a multi-scale method to identify the relevant dissipative mechanisms in fibrillating metal/elastomer interfaces that are encountered in stretchable electronics; (3) analysis and prediction of a particular microscale dissipative mechanism at patterned (roughened) interfaces, as a result of the competition between adhesive and cohesive failures; (4) advanced model parameter identification by integrated digital image correlation which essentially eliminates the need for calculating displacements from images prior to parameter identification; and (5) the modeling of the sintering behavior of Ag particles in a thermal interconnect material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang G, van Driel W, Fan X (2006) Mechanics of microelectronics. Springer, Dordrecht

    Book  Google Scholar 

  2. Laurila T, Vuorinen V, Mattila T, Turunen M, Paulasto-Kröckel M, Kivilahti J (2012) Interfacial compatibility in microelectronics: moving away from the trial and error approach. Springer-Verlag, London

    Book  Google Scholar 

  3. van Driel W, Zhang G, Janssen J, Ernst L, Su F, Chian K, Yi S (2003) Prediction and verification of process induced warpage of electronic packages. Microelectron Reliab 43:765–774

    Article  Google Scholar 

  4. Zhang G (2003) The challenges of virtual prototyping and qualification for future microelectronics. Microelectron Reliab 43:1777–1785

    Article  Google Scholar 

  5. Ernst L, van Driel W, van der Sluis O, Corigliano A, Tay A, Iwamoto N, Yuen M (2010) Fracture and delamination in microelectronic devices. In: Smart systems integration and reliability. Goldenbogen Verlag, Dresden, pp 634–663

    Google Scholar 

  6. Chen J, Bull S (2011) Approaches to investigate delamination and interfacial toughness in coated systems: an overview. J Phys D Appl Phys 44:034001

    Article  CAS  Google Scholar 

  7. Lipkin D, Clarke D, Evans A (1998) Effect of interfacial carbon on adhesion and toughness of gold-sapphire interfaces. Acta Mater 46:4835–4850

    Article  CAS  Google Scholar 

  8. Lin Z, Bristowe P (2007) Microscopic characteristics of the Ag(111)/ZnO(0001) interface present in optical coatings. Phys Rev B 75:205423

    Article  CAS  Google Scholar 

  9. Wymysłowski A, Iwamoto N, Yuen M, Fan H (2015) Molecular modeling and multiscaling issues for electronic material applications (volume 2). Springer, New York

    Google Scholar 

  10. Kendall K (2002) Energy analysis of adhesion. In: Dillard D, Pocius A (eds) The mechanics of adhesion. Elsevier, New York, pp 77–110

    Google Scholar 

  11. Kinloch A (1987) Adhesion and adhesives – science and technology. Chapman & Hall, London

    Book  Google Scholar 

  12. Yao Q, Qu J (2002) Interfacial versus cohesive failure on polymer-metal interfaces in electronic packaging – effects of interface roughness. J Electron Packag 124:127–134

    Article  CAS  Google Scholar 

  13. Crosby A, Schull K, Lakrout H, Creton C (2000) Deformation and failure modes of adhesively bonded elastic layers. J Appl Phys 88:2956–2966

    Article  CAS  Google Scholar 

  14. Glassmaker NJ, Hui CY, Yamaguchi T, Creton C (2008) Detachment of stretched viscoelastic fibrils. Eur Phys J E 25:253–266

    Article  CAS  Google Scholar 

  15. Liechti K, Wu J-D (2001) Mixed-mode, time-dependent rubber/metal debonding. J Mech Phys Solids 49:1039–1072

    Article  CAS  Google Scholar 

  16. Wei Y, Hutchinson J (1997) Nonlinear delamination mechanics for thin films. J Mech Phys Solids 45:1137–1159

    Article  CAS  Google Scholar 

  17. Creton C, Lakrout H (2000) Micromechanics of flat-probe adhesion tests of soft viscoelastic polymer films. J Polym Sci B Polym Phys 38:965–979

    Article  CAS  Google Scholar 

  18. Vossen B, Schreurs P, van der Sluis O, Geers M (2014) Multiscale modelling of delamination through fibrillation. J Mech Phys Solids 6:117–132

    Article  Google Scholar 

  19. Tvergaard V, Hutchinson J (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41:1119–1135

    Article  Google Scholar 

  20. Lavoie S, Long R, Tang T (2015) Rate dependent fracture of a double cantilever beam with combined bulk and interfacial dissipation. Int J Solids Struct 75–76:277–286

    Article  CAS  Google Scholar 

  21. Geißler G, Kaliske M (2010) Time-dependent cohesive zone modelling for discrete fracture simulation. Eng Fract Mech 77:153–169

    Article  Google Scholar 

  22. Neggers J, Hoefnagels J, van der Sluis O, Geers M (2015) Multi-scale experimental analysis of rate dependent metal-elastomer interface mechanics. J Mech Phys Solids 80:26–36

    Article  CAS  Google Scholar 

  23. Evans A, Hutchinson J (1989) Effects of non-planarity on the mixed-mode fracture resistance of bimaterial interfaces. Acta Metall 37:909–916

    Article  CAS  Google Scholar 

  24. Ardito R, Frangi A, Rizzini F, Corigliano A (2016) Evaluation of adhesion in microsystems using equivalent rough surfaces modeled with spherical caps. Eur J Mech A Solids 57:121–131

    Article  Google Scholar 

  25. Temizer İ (2016) Sliding friction across the scales: thermomechanical interactions and dissipation partitioning. J Mech Phys Solids 89:126–148

    Article  Google Scholar 

  26. Bull S, Balk L (2011) Adhesion and delamination of interfaces – editorial. J Phys D Appl Phys 44:030301

    Article  CAS  Google Scholar 

  27. Volinsky A, Moody N, Gerberich W (2002) Interfacial toughness measurements for thin films on substrates. Acta Mater 50:441–466

    Article  CAS  Google Scholar 

  28. Fedorov A, van Tijum R, Vellinga W, De Hosson J (2007) Degradation and recovery of adhesion properties of deformed metal–polymer interfaces studied by laser induced delamination. Prog Org Coat 58:180–186

    Article  CAS  Google Scholar 

  29. van Tijum R, Vellinga W, De Hosson JTM (2007) Adhesion along metal–polymer interfaces during plastic deformation. J Mater Sci 42:3529–3536

    Article  CAS  Google Scholar 

  30. van den Bosch M, Schreurs P, Geers M (2008) Identification and characterization of delamination in polymer coated metal sheet. J Mech Phys Solids 56:3259–3276

    Article  CAS  Google Scholar 

  31. Bosch M v d, Schreurs P, Geers M, Maris M v (2008) Interfacial characterization of pre-strained polymer coated steel by a numerical-experimental approach. Mech Mater 40:302–317

    Article  Google Scholar 

  32. Hutchinson J, Suo Z (1992) Mixed mode cracking in layered materials. Adv Appl Mech 29:63–191

    Article  Google Scholar 

  33. Reeder J, Crews J (1990) Mixed-mode bending method for delamination testing. AIAA J 28:1270–1276

    Article  Google Scholar 

  34. Litteken C, Dauskardt R (2003) Adhesion of polymer thin-films and patterned lines. Int J Fract 119/120:475–485

    Article  CAS  Google Scholar 

  35. Kolluri M, Hoefnagels J, Dommelen J v, Geers M (2011) An improved miniature mixed-mode delamination setup for in situ microscopic interface failure analyses. J Phys D Appl Phys 44:034005

    Article  CAS  Google Scholar 

  36. Kanninen M, Popelar C (1985) Advanced fracture mechanics. Oxford University Press, New York

    Google Scholar 

  37. Rice J (1988) Elastic fracture mechanics concepts for interfacial cracks. J Appl Mech 55:98–103

    Article  Google Scholar 

  38. Rice J, Sih G (1965) Plane problems of cracks in dissimilar media. J Appl Mech 32:418–423

    Article  Google Scholar 

  39. He M, Bartlett A, Evans A, Hutchinson J (1991) Kinking of a crack out of an interface: role of in-plane stress. J Am Ceram Soc 74:767–771

    Article  CAS  Google Scholar 

  40. He M, Hutchinson J (1989) Kinking of a crack out of an interface: tabulated solution coefficients. Harvard University, Cambridge, MA

    Google Scholar 

  41. Noijen S, van der Sluis O, Timmermans P, Zhang G (2012) A semi-analytic method for crack kinking analysis at isotropic bi-material interfaces. Eng Fract Mech 83:8–25

    Article  Google Scholar 

  42. Hellen T (1975) On the method of virtual crack extension. Int J Numer Methods Eng 9:187–207

    Article  Google Scholar 

  43. Rybicki E, Kanninen M (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938

    Article  Google Scholar 

  44. Krueger R (2004) Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57:109–143

    Article  Google Scholar 

  45. Shih C, Asaro R (1988) Elastic–plastic analysis of cracks on bimaterial interfaces. Part I. Small scale yielding. J Appl Mech 55:299–316

    Article  Google Scholar 

  46. Xuan Z, Khoo B, Li Z (2006) Computing bounds to mixed-mode stress intensity factors in elasticity. Arch Appl Mech 75:193–209

    Article  Google Scholar 

  47. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

    Article  Google Scholar 

  48. Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  Google Scholar 

  49. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282

    Article  Google Scholar 

  50. Alfano G, Crisfield M (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

    Article  Google Scholar 

  51. Ingraffea A (2004) Computational fracture mechanics. In: Stein E, de Borst R, Hughes T (eds) Encyclopedia of computational mechanics, volume 2: solids and structures. Wiley, Chichester

    Google Scholar 

  52. Kuna M (2013) Finite elements in fracture: theory – numerics – applications. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

  53. Leterrier Y, Médico L, Demarco F, Månson J-A, Betz U, Escolà M, Kharrazi Olsson M, Atamny F (2004) Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 460:156–166

    Article  CAS  Google Scholar 

  54. Tak Y-H, Kim K-B, Park H-G, Lee K-H, Lee J-R (2002) Criteria for ITO (indium-tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 411:12–16

    Article  CAS  Google Scholar 

  55. Abdallah A, de With G, Bouten P (2010) Experimental study on buckle evolution of thin inorganic layers on a polymer substrate. Eng Fract Mech 77:2896–2905

    Article  Google Scholar 

  56. Cotterell B, Chen Z (2000) Buckling and cracking of thin films on compliant substrates under compression. Int J Fract 104:169–179

    Article  Google Scholar 

  57. van der Sluis O, Abdallah A, Bouten P, Timmermans P, den Toonder J, de With G (2011) Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental-numerical approach. Eng Fract Mech 78:877–889

    Article  Google Scholar 

  58. Röll K (1976) Analysis of stress and strain distribution in thin films and substrates. J Appl Phys 47:3224–3229

    Article  Google Scholar 

  59. Chen Z, Cotterell B, Wang W (2002) The fracture of brittle thin films on compliant substrates in flexible displays. Eng Fract Mech 69:597–603

    Article  Google Scholar 

  60. Qiu Y, Crisfield M, Alfano G (2001) An interface element formulation for the simulation of delamination with buckling. Eng Fract Mech 68:1755–1776

    Article  Google Scholar 

  61. van Hal B, Peerlings R, Geers M, van der Sluis O (2007) Cohesive zone modeling for structural integrity analysis of IC interconnects. Microelectron Reliab 47:1251–1261

    Article  Google Scholar 

  62. Jansson N, Leterrier Y, Månson J-A (2006) Modeling of multiple cracking and decohesion of a thin film on a polymer substrate. Eng Fract Mech 73:2614–2626

    Article  Google Scholar 

  63. Mason R, Gunst R, Hess J (2003) Statistical design and analysis of experiments – with applications to engineering and science. Wiley, Hoboken

    Google Scholar 

  64. Moon M, Chung J-W, Lee K-R, Oh K, Wang R, Evans A (2002) An experimental study of the influence of imperfections on the buckling of compressed thin films. Acta Mater 50:1219–1227

    Article  CAS  Google Scholar 

  65. Moon M, Lee K, Oh K, Hutchinson J (2004) Buckle delamination on patterned substrates. Acta Mater 52:3151–3159

    Article  CAS  Google Scholar 

  66. Barsoum R (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng 10:25–37

    Article  Google Scholar 

  67. Faou J, Parry G, Grachev S, Barthel E (2012) How does adhesion induce the formation of telephone cord buckles? Phys Rev Lett 108:116102

    Article  CAS  Google Scholar 

  68. Li T, Suo Z, Lacour S, Wagner S (2005) Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J Mater Res 20:3274–3277

    Article  CAS  Google Scholar 

  69. Gonzalez M, Axisa F, Vanden Bulcke M, Brosteaux D, Vandevelde B, Vanfleteren J (2008) Design of metal interconnects for stretchable electronic circuits. Microelectron Reliab 48:825–832

    Article  Google Scholar 

  70. Gonzalez M, Vandevelde B, Christiaens W, Hsu Y, Iker F, Bossuyt F, Vanfleteren J, van der Sluis O, Timmermans P (2011) Design and implementation of flexible and stretchable systems. Microelectron Reliab 51:1069–1076

    Article  CAS  Google Scholar 

  71. Hsu Y, Gonzalez M, Bossuyt F, Axisa F, Vanfleteren J, Wolf I d (2010) The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J Micromech Microeng 20(7):075036

    Article  Google Scholar 

  72. Neggers J, Hoefnagels J, van der Sluis O, Sedaghat O, Geers M (2015) Analysis of the dissipative mechanisms in metal-elastomer interfaces. Eng Fract Mech 149:412–424

    Article  Google Scholar 

  73. van der Sluis O, Hsu Y, Timmermans P, Gonzalez M, Hoefnagels J (2011) Stretching induced interconnect delamination in stretchable electronic circuits. J Phys D Appl Phys 44:034008

    Article  CAS  Google Scholar 

  74. Hoefnagels J, Neggers J, Timmermans P, van der Sluis O, Geers M (2010) Copper-rubber interface delamination in stretchable electronics. Scr Mater 63(8):875–878

    Article  CAS  Google Scholar 

  75. van den Bosch M, Schreurs P, Geers M (2007) A cohesive zone model with a large displacement formulation accounting for interfacial fibrillation. Eur J Mech A Solids 26:1–19

    Article  Google Scholar 

  76. Marsden J, Hughes T (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  77. Vossen B, van der Sluis O, Schreurs P, Geers M (2015) On the role of fibril mechanics in the work of separation of fibrillating interfaces. Mech Mater 88:1–11

    Article  Google Scholar 

  78. Neggers J, Hoefnagels J, Hild F, Roux S, Geers M (2014) Direct stress–strain measurements from bulged membranes using topography image correlation. Exp Mech 54(5):717–727

    Article  Google Scholar 

  79. Maas S, Ellis B, Ateshian G, Weiss J (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134(1):011005

    Article  Google Scholar 

  80. Ogden R (1997) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  81. Matouš K, Kulkarni M, Geubelle P (2008) Multiscale cohesive failure modeling of heterogeneous adhesives. J Mech Phys Solids 56(4):1511–1533

    Article  CAS  Google Scholar 

  82. Vossen BG, van der Sluis O, Schreurs PJG, Geers MGD (2016) High toughness fibrillating metal-elastomer interfaces: on the role of discrete fibrils within the fracture process zone. Eng Fract Mech 164:93–105

    Article  Google Scholar 

  83. da Silva L, Ferreira N, Richter-Trummer V, Marques E (2010) Effect of grooves on the strength of adhesively bonded joints. Int J Adhes Adhes 30:735–743

    Article  CAS  Google Scholar 

  84. Kim W, Yun I, Lee J, Jung H (2010) Evaluation of mechanical interlock effect on adhesion strength of polymer-metal interfaces using micro-patterned surface topography. Int J Adhes Adhes 30:408–417

    Article  CAS  Google Scholar 

  85. van der Sluis O, Remmers J, Thurlings M, Welling B, Noijen S (2014) The competition between adhesive and cohesive fracture at a micro-patterned polymer-metal interface. Key Eng Mater 577–578:225–228

    Google Scholar 

  86. Reedy E (2008) Effect of patterned nanoscale interfacial roughness on interfacial toughness: a finite element analysis. J Mater Res 23:3056–3065

    Article  CAS  Google Scholar 

  87. Cordisco F, Zavattieri P, Hector L, Bower A (2014) On the mechanics of sinusoidal interfaces between dissimilar elastic–plastic solids subject to dominant mode I. Eng Fract Mech 131:38–57

    Article  Google Scholar 

  88. Cordisco F, Zavattieri P, Hector L, Carlson B (2016) Mode I fracture along adhesively bonded sinusoidal interfaces. Int J Solids Struct 83:45–64

    Article  CAS  Google Scholar 

  89. Lee M, Lim L, Lee B (2013) Finite element analysis of an adhesive joint using the cohesive zone model and surface pattern design of bonding surfaces. J Adhes 89:205–224

    Article  CAS  Google Scholar 

  90. Strom J, Parmigiani J (2014) Transition of crack path at bi-material interfaces. Eng Fract Mech 115:13–21

    Article  Google Scholar 

  91. van den Bosch M, Schreurs P, Geers M (2006) An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng Fract Mech 73:1220–1234

    Article  Google Scholar 

  92. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  Google Scholar 

  93. Tijssens M, Sluys L, van der Giessen E (2000) Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. Eur J Mech A Solids 19:761–779

    Article  Google Scholar 

  94. Camacho G, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938

    Article  Google Scholar 

  95. Wells G, Sluys L (2001) A new method for modelling cohesive cracks using finite elements. Int J Numer Methods Eng 50:2667–2682

    Article  Google Scholar 

  96. Verhoosel C, Gutiérrez M (2009) Modelling inter- and transgranular fracture in piezoelectric polycrystals. Eng Fract Mech 76:742–760

    Article  Google Scholar 

  97. Verhoosel C, Remmers J, Gutiérrez M (2009) A dissipation-based arc-length method for robust simulation of brittle and ductile failure. Int J Numer Methods Eng 77:1290–1321

    Article  Google Scholar 

  98. Pierron F, Grédiac M (2012) The virtual fields method. Springer, New York

    Book  Google Scholar 

  99. Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Methods Eng 61:189–208

    Article  Google Scholar 

  100. Andrieux S, Abda A (1996) Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Probl 12:553

    Article  Google Scholar 

  101. Ladeveze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20:485–509

    Article  Google Scholar 

  102. Grédiac M, Hild F (2012) Full-field measurements and identification in solid mechanics. Wiley, New York

    Google Scholar 

  103. Kavanagh K, Clough R (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23

    Article  Google Scholar 

  104. Réthoré J, Roux S, Hild F (2009) An extended and integrated digital image correlation technique applied to the analysis of fractured samples. Eur J Comput Mech 18:285–306

    Article  Google Scholar 

  105. Blaysat B, Hoefnagels J, Lubineau G, Alfano M, Geers M (2015) Interface debonding characterization by image correlation integrated with Double Cantilever Beam kinematics. Int J Solids Struct 55:79–91

    Article  Google Scholar 

  106. Ruybalid A, Hoefnagels J, van der Sluis O, Geers M (2016) Comparison of the identification performance of conventional FEM updating and integrated DIC. Int J Numer Methods Eng 106:298–320

    Article  Google Scholar 

  107. Neggers J, Hoefnagels J, Geers M, Hild F, Roux S (2015) Time-resolved integrated digital image correlation. Int J Numer Methods Eng 103:157–182

    Article  Google Scholar 

  108. Réthoré J, Elguedj T, Coret M, Chaudet P, Combescure A (2013) Robust identification of elasto-plastic constitutive law parameters from digital using 3D kinematics. Int J Solids Struct 50:73–85

    Article  Google Scholar 

  109. Wang Y (2006) Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Mater 54:953–961

    Article  CAS  Google Scholar 

  110. Bruchon J, Drapier S, Valdivieso F (2011) 3D finite element simulation of the matter flow by surface diffusion using a level set method. Int J Numer Methods Eng 86:845–861

    Article  Google Scholar 

  111. Asoro M, Ferreira P, Kovar D (2014) In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Mater 81:173–183

    Article  CAS  Google Scholar 

  112. German R (1996) Sintering theory and practice. Springer, New York

    Google Scholar 

  113. Tonks M, Gaston D, Millett P, Andrs D, Talbot P (2012) An object-oriented finite element framework for multiphysics phase field simulations. Comput Mater Sci 51:20–29

    Article  Google Scholar 

  114. Gaston D, Newman C, Hansen G, Lebrun-Grandi D (2009) MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239:1768–1778

    Article  CAS  Google Scholar 

  115. Ahmed K, Yablinsky C, Schulte A, Allen T, El-Azab A (2013) Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics. Model Simul Mater Sci Eng 21:065005

    Article  CAS  Google Scholar 

  116. Tonks M, Zhang Y, Butterfield A, Bai X-M (2015) Development of a grain boundary pinning model that considers particle size distribution using the phase field method. Model Simul Mater Sci Eng 23:045009

    Article  Google Scholar 

  117. Deng J (2012) A phase field model of sintering with direction-dependent diffusion. Mater Trans 53:385–389

    Article  CAS  Google Scholar 

  118. Moelans N, Blanpain B, Wollants P (2008) Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys Rev B 78:024113

    Article  CAS  Google Scholar 

  119. Ubachs R, Schreurs P, Geers M (2004) A nonlocal diffuse interface model for microstructure evolution of tinlead solder. J Mech Phys Solids 52:1763–1792

    Article  CAS  Google Scholar 

  120. Chockalingam K, Kouznetsova VG, van der Sluis O, Geers MGD (2016) 2D phase field modeling of sintering of silver nanoparticles. Comput Methods Appl Mech Eng 312:492–508

    Article  Google Scholar 

  121. Bron W, Machlin E (1956) Grain boundary mobilities in high purity silver. Trans Am Inst Min Metall Eng 206:513–514

    Google Scholar 

  122. Dannenberg R, Stach E, Groza J, Dresser B (2000) In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films. Thin Solid Films 370:54–62

    Article  CAS  Google Scholar 

  123. Trautt Z, Upmanyu M, Karma A (2006) Interface mobility from interface random walk. Science 314:632–635

    Article  CAS  Google Scholar 

  124. Pareja R (1981) Migration kinetics of (001) twist grain-boundaries in silver bicrystalline films. Z Metallkd 72:198–202

    CAS  Google Scholar 

  125. Inman M, Tipler H (1963) Interfacial energy and composition in metals and alloys. Metall Rev 8:105–166

    Article  CAS  Google Scholar 

  126. McLean D (1957) Grain boundaries in metals. Clarendon Press, Oxford, UK

    Google Scholar 

  127. Rhead G (1963) Surface self-diffusion and faceting on silver. Acta Metall 11:1035–1042

    Article  CAS  Google Scholar 

  128. Rothman S, Peterson N, Robinson J (1970) Isotope effect for self-diffusion in single crystals of silver. Phys Status Solidi B 39:635–645

    Article  CAS  Google Scholar 

  129. Kumar V, Fang Z, Fife P (2010) Phase field simulations of grain growth during sintering of two unequal-sized particles. Mater Sci Eng A 528:254–259

    Article  CAS  Google Scholar 

  130. Buehler M (2008) Atomistic modeling of materials failure. Springer Science+Business Media, LLC, New York

    Book  Google Scholar 

  131. Liu W, Karpov E, Zhang S, Park H (2004) An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Eng 193:1529–1578

    Article  Google Scholar 

  132. Geers M, Kouznetsova V, Matouš K, Yvonnet J (2017) Homogenization methods and multiscale modeling: non-linear problems. In: Encyclopedia of computational mechanics – second edition. Wiley, p. in preparation https://onlinelibrary.wiley.com/doi/10.1002/9781119176817.ecm2107; https://doi.org/10.1002/9781119176817.ecm2107

  133. Fish J (2006) Bridging the scales in nano engineering and science. J Nanopart Res 8:577–594

    Article  Google Scholar 

  134. Xiao S, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193:1645–1669

    Article  Google Scholar 

  135. Tadmor E, Phillips R, Ortiz M (1996) Quasicontinuum analysis of defects in solids. Philos Mag A73:1529–1563

    Article  Google Scholar 

  136. Zeng X, Li S (2010) A multiscale cohesive zone model and simulations of fractures. Comput Methods Appl Mech Eng 199:547–556

    Article  Google Scholar 

  137. Galvis A, Sollero P (2016) 2D analysis of intergranular dynamic crack propagation in polycrystalline materials a multiscale cohesive zone model and dual reciprocity boundary elements. Comput Struct 164:1–14

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the following colleagues, (former) students, and funding sources:

  • Buckling-driven delamination in flexible displays: Amir Abdallah, Piet Bouten, Peter Timmermans, Jaap den Toonder, and Patrick Ooms as well as the financial support of the EC under contract IST-2004-4354 (Flexidis)

  • Fibrillating interfaces in stretchable electronics: YY Hsu, Mario Gonzalez, Peter Timmermans, and Jan Vanfleteren as well as the financial support of the EC under contract IST-028026 (Stella) and of the Dutch Technology Foundation STW (Grant nrs. 08097 and 10108)

  • Adhesive and cohesive failure at patterned surfaces: Peter Timmermans, Sander Noijen, Kaipeng Hu, and Thijs Thurlings, as well as the financial support of the EC under contract NMP-2008-214371 (NanoInterface)

  • Small-scale parameter identification by means of IDIC: Marc van Maris and Salman Shafqat, as well as the financial support of the Materials Innovation Institute under project number M62.2.12472

  • Sintering of Ag particles: the financial support of the EC under contract ICT-318117 (NanoTherm)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf van der Sluis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Sluis, O. et al. (2018). Advances in Delamination Modeling of Metal/Polymer Systems: Continuum Aspects. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_3

Download citation

Publish with us

Policies and ethics