Skip to main content

Characterization of Electronic, Electrical, Optical, and Mechanical Properties of Graphene

  • Chapter
  • First Online:

Abstract

Graphene is a two-dimensional material which is composed of a honeycomb lattice made of single atomic layer of carbon atoms arranged in a hexagonal atomic structure. It has many extraordinary properties desirable for real-world applications. Low electrical resistivity, high electromigration resistance, high thermal conductivity, and outstanding mechanical strength make graphene a promising candidate for nano-interconnects. The atomically thin graphene is also optically transparent in a wide spectrum of wavelength and an excellent diffusion barrier. In this chapter, characterization of graphene for electronic, electrical, optical, and mechanical applications is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wallace PR (1947) The band theory of graphite. Phys Rev 71:622.G/9

    Article  Google Scholar 

  2. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  3. Daniel RC et al (2012) Experimental review of graphene ISRN condensed matter physics. 2012:501686, 56 pages

    Google Scholar 

  4. Yang S et al (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22(17):3634–3640

    Article  CAS  Google Scholar 

  5. Poh HL et al (2013) Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7:5262–5272

    Article  CAS  Google Scholar 

  6. Choi CH et al (2013) Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for enhanced oxygen reduction activity in acid media. RSC Adv 3:12417–12422

    Article  CAS  Google Scholar 

  7. Liu Z-W et al (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Chem Int Ed 50:3257–3261

    Article  CAS  Google Scholar 

  8. Yazyev OV et al (2008) Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys Rev Lett 100:047209

    Article  CAS  Google Scholar 

  9. Wu Z-S et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417

    Article  CAS  Google Scholar 

  10. Liu C-Y et al (2011) Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Opt Express 19(18):17092–17098

    Article  CAS  Google Scholar 

  11. Elias DC et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610

    Article  CAS  Google Scholar 

  12. Gupta A et al (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673

    Article  CAS  Google Scholar 

  13. Kompan ME et al (2010) Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by raman spectroscopy. Tech Phys Lett 36:1140–1142

    Article  CAS  Google Scholar 

  14. Sofo JO et al (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401

    Article  CAS  Google Scholar 

  15. Chen W, et al (2011) Low-stress transfer of graphene and its tunable resistance by remote plasma treatments in hydrogen. IEEE Nanotechnology Conference, pp 15–18

    Google Scholar 

  16. Shin D-W et al (2016) Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments. Mater Res Bull 82:1–142

    Article  CAS  Google Scholar 

  17. Zhang C, Mahmood N et al (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25:4932–4937

    Article  CAS  Google Scholar 

  18. Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5:1753–1767

    Article  CAS  Google Scholar 

  19. Gopalakrishnan K et al (2013) Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Mater Chem A 1:7563–7565

    Article  CAS  Google Scholar 

  20. Ding W et al (2013) Space-confinement- induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Chem Int Ed 52:11755–11759

    Article  CAS  Google Scholar 

  21. Wu Z-S et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  CAS  Google Scholar 

  22. Maitra U et al (2013) Highly effective visible-light- induced H2 generation by single-layer 1T- MoS2 and a nanocomposite of few-layer 2H- MoS2 with heavily nitrogenated graphene. Chem Int Ed 52(49):13057–13061

    Article  CAS  Google Scholar 

  23. Kim YA et al (2012) Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6:6293–6300

    Article  CAS  Google Scholar 

  24. Panchakarla LS et al (2009) Synthesis, structure and properties of boron and nitrogen doped graphene. Adv Mater 21:4726–4730

    CAS  Google Scholar 

  25. Wang L et al (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem C 117:23251–23257

    Article  CAS  Google Scholar 

  26. Shan C et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Article  CAS  Google Scholar 

  27. Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477

    Article  CAS  Google Scholar 

  28. Wang K et al (2014) Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 70:612–617

    Article  CAS  Google Scholar 

  29. Chen P et al (2016) One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep 6:26146

    Article  CAS  Google Scholar 

  30. Lin T et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 18 350(6267):1508–1513

    CAS  Google Scholar 

  31. Yang L et al (2016) Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale 8:2159–2167

    Article  CAS  Google Scholar 

  32. Xue Y et al (2015) Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Mater 2(4):044001

    Article  CAS  Google Scholar 

  33. Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944

    Article  CAS  Google Scholar 

  34. Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  35. Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultra-capacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  36. Mou Z et al (2011) Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl Surf Sci 258:1704–1710

    Article  CAS  Google Scholar 

  37. Xu D et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495

    Article  CAS  Google Scholar 

  38. Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Article  CAS  Google Scholar 

  39. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  40. Guo B et al (2010) Controllable N-doping of graphene. Nano Lett 10(12):4975–4980

    Article  CAS  Google Scholar 

  41. Wang H et al (2013) Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9:1316–1320

    Article  CAS  Google Scholar 

  42. Wu T et al (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36(6):1385–1391

    Article  CAS  Google Scholar 

  43. Li X et al (2012) Boron doping of graphene for graphene–silicon p–n junction solar cells. Adv Energy Mater 2:425–429

    Article  CAS  Google Scholar 

  44. Gebhardt J et al (2013) Growth and electronic structure of boron-doped graphene. Phys Rev B Cond Matter Mater Phys 87:155437

    Article  CAS  Google Scholar 

  45. Cattelan M et al (2013) Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem Mater 25:1490–1495

    Article  CAS  Google Scholar 

  46. Sheng Z-H et al (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395

    Article  CAS  Google Scholar 

  47. Pham VH et al (2013) Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun 49:6665–6667

    Article  CAS  Google Scholar 

  48. Khai TV et al (2012) Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem Eng J 211–212:369–377

    Article  CAS  Google Scholar 

  49. Ruitao LV et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586

    Article  CAS  Google Scholar 

  50. Qu L, Liu Y et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326

    Article  CAS  Google Scholar 

  51. Tomo-o T et al (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51:055101

    Article  Google Scholar 

  52. Zhang L-S et al (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059

    Article  CAS  Google Scholar 

  53. Jeon IY et al (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 109:5588–5593

    Article  CAS  Google Scholar 

  54. Jeon IY et al (2013) Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci Rep 3:2260–2265

    Article  Google Scholar 

  55. Tetlow H et al (2014) Growth of epitaxial graphene: theory and experiment. Phys Rep 542(3):195–295

    Article  CAS  Google Scholar 

  56. Oznuluer T et al (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101

    Article  CAS  Google Scholar 

  57. Park G et al (2011) Synthesis of graphene-gold nanocomposites via sonochemical reduction. J Nanosci Nanotechnol 11(7):6095–6101

    Article  CAS  Google Scholar 

  58. Liu L et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6(9):8241–8824

    Article  CAS  Google Scholar 

  59. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496

    Article  CAS  Google Scholar 

  60. Xia F et al (2011) The origins and limits of metal-graphene junction resistance. Nat Nanotechnol 6(3):179–184

    Article  CAS  Google Scholar 

  61. Tzeng Y et al (2012) Proceedings of 12th IEEE nanotechnology conference, pp 1–4

    Google Scholar 

  62. Wu B et al (2013) Self-organized graphene crystal patterns. NPG Asia Mater 5:e36

    Article  CAS  Google Scholar 

  63. Geng D et al (2013) Fractal etching of graphene. J Am Chem Soc 135:6431–6434

    Article  CAS  Google Scholar 

  64. Luo B et al (2014) Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater 26:3218–3224

    Article  CAS  Google Scholar 

  65. Liu Y et al (2015) Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetector. Nat Commun 6:8589

    Article  CAS  Google Scholar 

  66. Kang P et al (2016) Photodetectors: crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv Mater 28:4639–4645

    Article  CAS  Google Scholar 

  67. Dang VQ et al (2015) Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector. Small 11(25):3054–3065

    Article  CAS  Google Scholar 

  68. Lee Y et al (2015) High-performance perovskite–graphene hybrid photodetector. Adv Mater 27:41–46

    Article  CAS  Google Scholar 

  69. Sun Z et al (2016) Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale 8:7377

    Article  CAS  Google Scholar 

  70. Miao J et al (2015) High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8):936–942

    Article  CAS  Google Scholar 

  71. Liu R et al (2015) Gate modulation of graphene-ZnO nanowire Schottky diode. Sci Rep 5:10125

    Article  CAS  Google Scholar 

  72. Haider G et al (2016) Electrical-polarization- induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv Funct Mater 26:620–628

    Article  CAS  Google Scholar 

  73. Chiang C-W et al (2016) Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots. ACS Appl Mater Interfaces 8:466–471

    Article  CAS  Google Scholar 

  74. Novoselov K (2007) Graphene: mind the gap. Nat Mater 6:720–721

    Article  CAS  Google Scholar 

  75. Chen D et al (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  76. Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    Article  CAS  Google Scholar 

  77. Chun S et al (2014) A flexible graphene touch sensor in the general human touch range. Appl Phys Lett 105:041907

    Article  CAS  Google Scholar 

  78. Cote LJ et al (2009) Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043

    Article  CAS  Google Scholar 

  79. Qiao Z et al (2015) Modulation of the optical transmittance in monolayer graphene oxide by using external electric field. Sci Rep 5:14441

    Article  CAS  Google Scholar 

  80. Wu J et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302

    Article  CAS  Google Scholar 

  81. Wang SY et al (1983) 100 GHz bandwidth planar GaAs Schottky photodiode. Electron Lett 19(14):554–555

    Article  CAS  Google Scholar 

  82. Wey YG et al (1991) Ultrafast graded double-heterostructure GaInAs/InP photodiode. Appl Phys Lett 58(19):2156

    Article  CAS  Google Scholar 

  83. Hack M et al (1989) Amorphous silicon photoconductive diode. Appl Phys Lett 54:96

    Article  CAS  Google Scholar 

  84. Smith GM et al (1999) Substrate effects on GaN photoconductive detector performance. Appl Phys Lett 75:25

    Article  CAS  Google Scholar 

  85. Kopytko M et al (2010) High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes. Optoelectron Rev 18(3):277–283

    CAS  Google Scholar 

  86. Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  87. Mak KF et al (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun 152:1341–1349

    Article  CAS  Google Scholar 

  88. Mueller T, Xia FNA, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photon 4:297–301

    Article  CAS  Google Scholar 

  89. Mittendorff M et al (2015) Universal ultrafast detector for short optical pulses based on graphene. Opt Express 23(22):28728–28735

    Article  CAS  Google Scholar 

  90. Cheng C-C et al (2016) Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions. Appl Phys Lett 109:053501

    Article  CAS  Google Scholar 

  91. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  92. Castro Nero AH et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  93. Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385

    Article  CAS  Google Scholar 

  94. Park HJ et al (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094

    Article  CAS  Google Scholar 

  95. Janowska I et al (2012) Mechanical thinning to make few-layer graphene from pencil lead. Carbon 50(8):3106–3110

    Article  CAS  Google Scholar 

  96. Griep MH et al (2016) Enhanced graphene mechanical properties through ultrasmooth copper growth substrates. Nano Lett 16(3):1657–1662

    Article  CAS  Google Scholar 

  97. Awano Y (2009) Graphene for VLSI: FET and interconnect applications. In: IEDM tech. dig. IEEE International Electron Device Meeting (IEDM), Baltimore pp 1–4. DOI: https://doi.org/10.1109/IEDM.2009.5424381

  98. Fujita M et al (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65(7):1920

    Article  CAS  Google Scholar 

  99. Nakada K et al (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54(24):17954

    Article  CAS  Google Scholar 

  100. Sharma V et al (2014) MLGNR interconnects with FinFet driver: optimized delay and power performance for technology beyond 16nm. Int J Res Eng Technol (IJRET) 3(9):117–123

    Article  Google Scholar 

  101. Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501. 7 pages

    Article  CAS  Google Scholar 

  102. Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501

    Article  CAS  Google Scholar 

  103. Wu Y et al (2011) Conductance of graphene nanoribbon junctions and the tight binding model. Nano Scale Res Lett 6

    Google Scholar 

  104. Reddy N, Majumder K et al (2012) Optimized delay and power performances in multilayer graphene nanoribbon interconnects. Asia Pacific conference on postgraduate research in microelectronics and electronics, PRIME ASIA. pp 122–125, 5–7

    Google Scholar 

  105. Reddy N et al (2012) Dynamic crosstalk effect in multilayer graphene nanoribbon interconnects. 2012 international conference on communication, devices and intelligent systems (CODIS). pp 472–475, 28–29

    Google Scholar 

  106. Cui JP et al (2012) IEEE Trans Electromagn Compat 54(1):126–132

    Article  Google Scholar 

  107. Zhao WS et al. (2012) Signal integrity analysis of graphene nano-ribbon (GNR) interconnects. 2012 I.E. electrical design of advanced packaging and systems symposium, EDAPS. pp 227–230, 9–11

    Google Scholar 

  108. Duryat RS et al (2016) Graphene nanoribbons (GNRs) for future interconnect. IOP Conf Ser Mater Sci Eng 131:012018

    Article  Google Scholar 

  109. Otakar F et al (2014) Development of a universal stress sensor for graphene and carbon fibres. Carbon 68:440–451

    Article  CAS  Google Scholar 

  110. Nevius MS et al (2015) Semiconducting graphene from highly ordered substrate interactions. PRL 115:136802

    Article  CAS  Google Scholar 

  111. Markevich et al (2012) Modification of electronic properties of graphene by interaction with substrates and dopants. University of Exeter, Doctoral Theses

    Google Scholar 

  112. Ishigami et al (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643–1648

    Article  CAS  Google Scholar 

  113. Katsnelson et al (2007) Detection of individual gas molecule adsorbed on graphene. Phil Trans Roy Soc A 366:195–204

    Article  CAS  Google Scholar 

  114. Fratini S et al (2008) Substrate-limited electron dynamics in graphene. Phys Rev B 77:195415

    Article  CAS  Google Scholar 

  115. Meric I et al (2008) Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat Nanotechnol 3:654–659

    Article  CAS  Google Scholar 

  116. Ando T (2006) Fine structure constant defines visual transparency of graphene. J Phys Soc Jpn 75:074716

    Article  CAS  Google Scholar 

  117. Nomura K et al (2007) Quantum transport of massless Dirac fermions. Phys Rev Lett 98:076602

    Article  CAS  Google Scholar 

  118. Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726

    Article  CAS  Google Scholar 

  119. Das Sarma S et al (2011) Electronic transport in two-dimensional graphene. Phys Rev B 83:121405 (R)

    Article  CAS  Google Scholar 

  120. Young AF et al (2012) Electronic compressibility of layer-polarized bilayer graphene. Phys Rev B 85:235458

    Article  CAS  Google Scholar 

  121. Shahriari et al (2016) Interaction of nano-boron nitride/graphene sheets with anode lithium ion battery. J Comput Theor Nanosci 13(5):3070–3082

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonhua Tzeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, WL., Wu, DM., Chen, Y., Tzeng, Y. (2018). Characterization of Electronic, Electrical, Optical, and Mechanical Properties of Graphene. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_26

Download citation

Publish with us

Policies and ethics