Skip to main content

High Electromagnetic Shielding of Plastic Transceiver Packaging Using Dispersed Multiwall Carbon Nanotubes

  • Chapter
  • First Online:
Book cover Nanopackaging

Abstract

A novel polymer-based multiwall carbon nanotube (MWCNT) composite with high shielding effectiveness (SE) and effective electromagnetic susceptibility (EMS) performance is proposed for use in packaging a high-speed 2.5 Gbps plastic transceiver module. Both polymer-based dispersed and non-dispersed MWCNT composites are fabricated and then the SE performances are compared. The results showed that the ionic liquid (IL)-dispersed MWCNT composites with 30% weight percentage MWCNTs exhibited high SE of 40–46 dB. By comparison, the MWCNT composites fabricated by a nondispersive process required a higher weight percentage (50%) of MWCNTs. Furthermore, the package housing developed, fabricated by IL-dispersed MWCNT composites, clearly improved EMS performance, mask margin, and power penalty for a 2.5 Gbps lightwave transmission system. This significantly improved result has marked the achievement of using the dispersive MWCNT composites for the high SE and suitability for packaging low-cost and high-performance optical transceiver modules used in the fiber-to-the-home (FTTH) lightwave transmission systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tatsuno K, Yoshida K, Kato T, Hirataka T, Miura T, Fukuda K, Ishikawa T, Shimaoka M, Ishii T (1999) High-performance and low cost plastic optical modules for access network system applications. J Lightwave Technol 17(7):1211–1216

    Article  Google Scholar 

  2. Fukuda M, Ichikawa F, Shuto Y, Sato H, Yamada Y, Kato K, Tohno S, Toba H, Sugie T, Yoshida J, Suzuki K, Suzuji O, Kondo S (1999) Plastic module of laser diode and photodiode mounted on planar lightwave circuit for access network. J Lightwave Technol 17(7):1585–1590

    Article  CAS  Google Scholar 

  3. Wu TL, Jou WS, Dai SG, Cheng WH (2003) Effective electromagnetic shielding of plastic packaging in low-cost optical transceiver modules. J Lightwave Technol 21(6):1536–1543

    Article  CAS  Google Scholar 

  4. Cheng WH, Hung WC, Lee CH, Hwang GL, Jou WS, Wu TL (2004) Low cost and low electromagnetic interference packaging of optical transceiver modules. J Lightwave Technol 22(9):2177–2183

    Article  Google Scholar 

  5. Wu TL, Lin MC, Lin CW, Shih TT, Cheng WH (2005) High electromagnetic susceptibility performance plastic package for 10 Gibt/s optical transceiver modules. Electron Lett 41(8):494–495

    Article  Google Scholar 

  6. Jana PB, Mallick AK, De K (1992) Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range. IEEE Trans Electromagn Compat 34(11):478–492

    Article  Google Scholar 

  7. Wilson PF, Ma MT, Adams JW (1988) Technique, for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation. IEEE Trans Electromagn Compat 3(8):239–247

    Article  Google Scholar 

  8. Jou WS, Wu TL, Chiu SK, Cheng WH (2001) Electromagnetic shielding of nylon-66 composites applied to laser modules. IEEE/TMS J Electron Mater 30(10):1287–1293

    Article  CAS  Google Scholar 

  9. Jou WS, Wu TL, Chiu SK, Cheng WH (2002) The influence of fiber orientation on electromagnetic shielding in liquid crystal polymers. IEEE/TMS J Electron Mater 31(3):178–184

    Article  CAS  Google Scholar 

  10. Wu TL, Jou WS, Hung WC, Lee CH, Lin CW, Cheng WH (2005) High electromagnetic shielding of plastic package for 2.5 Gbps optical transceiver modules. IEEE Trans Adv Packag 28(1):89–95

    Article  Google Scholar 

  11. Minot ED, Yaish Y, Sazonova V, Park JY, Brink M, McEuen PL (2003) Turning carbon nanotube band gaps with strain. Phys Rev Lett 90(15):154601–154604

    Article  Google Scholar 

  12. Teo KBK et al (2004) Carbon nanotube technology for solid state and vacuum electronics. IEE Proc-Circ Devices Syst 151(5):443–451

    Article  Google Scholar 

  13. Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom-up approach for carbon nanotube interconnects. Appl Phys Lett 82(15):2491–2493

    Article  CAS  Google Scholar 

  14. Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786

    Article  CAS  Google Scholar 

  15. Pike RT, Dellmo R, Wade J, Newland S, Hyland G, Newton CM (2004) Metallic fullerence and MWCNT composite solutions for microelectronics system electrical enhancement. In: Proceedings of the 54th ECTC, Las Vegas, pp 461–465

    Google Scholar 

  16. Zhu L, Sun Y, Xu J, Zhang Z, Hess D, Wong CP (2005) Aligned carbon nanotube for electronical interconnect in thermal management. In: Proceedings of the 55th ECTC, Orlando, pp 44–50

    Google Scholar 

  17. Zhu L, Xiu Y, Hess D, Wong CP (2006) In-situ opening aligned carbon nanotube films/array for multichannel ballistic transport in electronic internecct. In: Proceedings of the 56th ECTC, San Diego, pp 461–465

    Google Scholar 

  18. Chang CM, Chiu JC, Jou WS, Wu TL, Cheng WH (2006) New package scheme of a 2.5Gb/s plastic transceiver module employing multiwall nanotubes for low electromagnetic interference. J Sel Top Quantum Electron 12(5):1025–1031

    Article  CAS  Google Scholar 

  19. Chang CM, Lin MC, Chiu JC, Jou WS, Cheng WH (2006) High-performance electromagnetic susceptibility of plastic transceiver modules using carbon nanotubes. J Sel Top Quantum Electron 12(6):1091–1098

    Article  CAS  Google Scholar 

  20. Stauffer D, Aharony A (1992) Introduction to percolation theory, 2nd edn. Taylor & Francis, London

    Google Scholar 

  21. Zallen R (1983) The physics of amorphous solids. Wiley, New York

    Book  Google Scholar 

  22. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47(1):480–488

    Article  CAS  Google Scholar 

  23. Kymakisa E, Amaratunga GAJ (2006) Electrical properties of single-wall carbon nanotube-polymer composite films. J Appl Phys 99:084302-1–084302-7

    Google Scholar 

  24. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2013) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    Article  Google Scholar 

  25. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2013) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382

    Article  Google Scholar 

  26. Li CY, Li L, Cai W, Kodjie SL, Tenneti KK (2005) Nano-hybrid Shish-kebab: polymer decorated carbon nanotubes. Adv Mater 17:1198–1202

    Article  CAS  Google Scholar 

  27. Chang CM, Chiu JC, Lam YF, Lin JW, Yeh CY, Jou WS, Lin JJ, Cheng WH (2008) High electromagnetic shielding of a 2.5-Gbps plastic transceiver modules using dispersive multiwall carbon nanotubes. J Lightwave Technol 26(10):1256–1628

    Article  CAS  Google Scholar 

  28. Kim HM, Kim K, Lee CY, Jooa J, Cho SJ, Yoon HS, Pejakovic´ DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84(4):589–591

    Article  CAS  Google Scholar 

  29. Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ, Lyu SC, Lee CJ (2004) Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Curr Appl Phys 4:577–580

    Article  Google Scholar 

  30. Collins PG, Avouris P (2002) Multishell conduction in multiwalled carbon nanotubes. Appl Phys A Mater Sci Process 74:329–332

    Article  CAS  Google Scholar 

  31. Jou WS, Hsu CF (2006) A novel carbon nano-tube polymer-based composite with high electromagnetic shielding. IEEE/TMS J Electron Mater 35(3):462–470

    Article  CAS  Google Scholar 

  32. Lin S-T, Wei K-L, Lee T-M, Chiou K-C, Lin J-J (2006) Functionalizing multi-walled carbon nanotubes with poly(oxyalkylene)-amidoamines. Nanotechnology 17:3197–3203

    Article  CAS  Google Scholar 

  33. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    Article  CAS  Google Scholar 

  34. Katherine Price B, Hudson JL, Tour JM (2005) Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J Am Chem Soc 127:14867–14870

    Article  Google Scholar 

  35. Standard testing method for measuring the electromagnet electromagnetic shielding effectiveness of planner materials, ASTM D4935-92. ASTM, Philadelphia

    Google Scholar 

  36. Paul CR (1992) Introduction to electromagnetic compatible. A Wiley-interscience Publication, Ch. 2, pp 42–77

    Google Scholar 

  37. DiBene JT, Knighten JL (1997) Effects of device variations on the EMI potential of high speed digital integrated circuits. In: Proceedings of IEEE 1997 international symposium on electromagnetic compatiblity, Aug 18–22, pp 208–212

    Google Scholar 

  38. Hockanson DM, Ye X, Drewniak JL, Hubing TH, Doren TPV, DuBroff RE (2001) FDTD and experimental investigation of EMI from stacked-card PCB configurations. IEEE Trans Electromagn Compat 43(1):1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wood-Hi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, WH., Huang, P.L., Chang, CM. (2018). High Electromagnetic Shielding of Plastic Transceiver Packaging Using Dispersed Multiwall Carbon Nanotubes. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_19

Download citation

Publish with us

Policies and ethics