Skip to main content

Carbon Nanotubes: Synthesis and Characterization

  • Chapter
  • First Online:
  • 1943 Accesses

Abstract

A remarkable discovery of graphitic particles in the soot of arc-discharge vessel by Iijima marked the birth of new era in nanoscience – “carbon nanotechnology.” Carbon nanotubes (CNTs) represent a distinct group of nanostructures of relatively few nanometers in diameter and micrometers in length with unique physical and chemical properties. Structurally based on number of graphitic layers, CNTs are classified as single-walled (SWCNTs) and multiwalled (MWCNTs). CNTs offer high surface area, high aspect ratio, and diverse properties with many potential nanotechnology applications. This chapter attempts to explain the bottom-up approach of growing CNTs from primary growth mechanisms to the more sophisticated and modern techniques of controlled chemical synthesis of CNTs. The primary growth parameter that distinguishes the various synthesis techniques is the temperature. This chapter provides advancements in CNT synthesis and characterization based on high-temperature techniques such as the arc discharge, laser ablation and corona discharge methods, and low-temperature chemical vapor deposition techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Wang XK, Lin XW, Dravid VP, Ketterson JB, Chang RPH (1995) Stable glow discharge for synthesis of carbon nanotubes. Appl Phys Lett 66:427–429

    Article  CAS  Google Scholar 

  3. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  4. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  5. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  CAS  Google Scholar 

  6. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    Article  CAS  Google Scholar 

  7. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    Article  CAS  Google Scholar 

  8. Cheng HM, Li F, Su G, Pan HY, He LL, Sun X et al (1998) Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl Phys Lett 72:3282–3284

    Article  CAS  Google Scholar 

  9. Ishigami M, Cumings J, Zettl A, Chen S (2000) A simple method for the continuous production of carbon nanotubes. Chem Phys Lett 319:457–459

    Article  CAS  Google Scholar 

  10. Ando Y, Zhao X, Sugai T, Kumar M (2004) Growing carbon nanotubes. Mater Today 7:22–29

    Article  CAS  Google Scholar 

  11. Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52:2083

    Article  CAS  Google Scholar 

  12. Harris SCTPJF, Claridge JB, Green MLH (1994) High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation. J Chem Soc Faraday Trans 90:2799–2802

    Article  CAS  Google Scholar 

  13. Yudasaka M, Yamada R, Sensui N, Wilkins T, Ichihashi T, Iijima S (1999) Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. J Phys Chem B 103:6224–6229

    Article  CAS  Google Scholar 

  14. Uchino T, Bourdakos KN, Groot CHD, Ashburn P, Kiziroglou ME, Dilliway GD et al (2005) Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands. Appl Phys Lett 86:233110

    Article  Google Scholar 

  15. Fonseca A, Nagy J (2001) Carbon nanotubes formation in the arc discharge process. In: Carbon filaments and nanotubes: common origins, differing applications? Springer, New York, USA, pp 75–84

    Chapter  Google Scholar 

  16. Keidar M, Waas AM (2004) On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology 15:1571–1575

    Article  CAS  Google Scholar 

  17. Journet WKM, Bernier CP, Loiseau A, de la Chapelle ML, Lefrant S, Denlard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Lett Nat 388:756–757

    Article  CAS  Google Scholar 

  18. Zhu HW, Lia XS, Jianga B, Xua C, Zhua Y, Chenb DWX (2002) Formation of carbon nanotubes in water by the electric-arc technique. Chem Phys Lett 366:664–669

    Article  CAS  Google Scholar 

  19. Keidar M (2007) Factors affecting synthesis of single wall carbon nanotubes in arc discharge. J Phys D Appl Phys 40:2388

    Article  CAS  Google Scholar 

  20. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov KK (2008) Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Appl Phys Lett 92:043129

    Article  Google Scholar 

  21. Guo T, Nikolaev P, Rinzler AG, Colbert DT, Smalley RE, Tomanek D (1995) Self-assembly of tubular fullerenes. J Phys Chem B 99:10694–10697

    Article  CAS  Google Scholar 

  22. Maser WK, Muñoz E, Benito AM, Martinez MT, de la Fuente GF, Maniette Y et al (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292:587–593

    Article  CAS  Google Scholar 

  23. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54

    Article  CAS  Google Scholar 

  24. Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A Mater Sci Process 72:573–580

    Article  CAS  Google Scholar 

  25. Aïssa B, Therriault D, El Khakani M (2011) On-substrate growth of single-walled carbon nanotube networks by an “all-laser” processing route. Carbon 49:2795–2808

    Article  Google Scholar 

  26. Mishra LN, Shibata K, Ito H, Yugami N, Nishida Y (2004) Pulsed corona discharge as a source of hydrogen and carbon nanotube production. IEEE Trans Plasma Sci 32:1727–1733

    Article  CAS  Google Scholar 

  27. Sano N, Nobuzawa M (2007) Localized fabrication of carbon nanotubes forest at a needle electrode by atmospheric pressure corona discharge. Diam Relat Mater 16:144–148

    Article  CAS  Google Scholar 

  28. Uhm HS, Hong YC, Shin DH (2006) A microwave plasma torch and its applications. Plasma Sources Sci Technol 15:S26–S34

    Article  Google Scholar 

  29. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    Article  CAS  Google Scholar 

  30. Researchers shatter world records with length of latest carbon nanotube arrays. University of Cincinnati. Article: www.physorg. April 25th 2007

  31. Che G, Lakshmi B, Martin C, Fisher E, Ruoff RS (1998) Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10:260–267

    Article  CAS  Google Scholar 

  32. Lee YT, Park J, Choi YS, Ryu H, Lee HJ (2002) Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800–1100 °C. J Phys Chem B 106:7614–7618

    Article  CAS  Google Scholar 

  33. Lee YT, Kim NS, Park J, Han JB, Choi YS, Ryu H et al (2003) Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000°C. Chem Phys Lett 372:853–859

    Article  CAS  Google Scholar 

  34. Nerushev OA, Morjan RE, Ostrovskii DI, Sveningsson M, Jonsson M, Rohmund F et al (2002) The temperature dependence of Fe-catalysed growth of carbon nanotubes on silicon substrates. Phys B Condens Matter 3233(1):51–59

    Article  Google Scholar 

  35. Hsun Lin C, Hsing Lee S, Ming Hsu C, Tzu Kuo C (2004) Comparisons on properties and growth mechanisms of carbon nanotubes fabricated by high-pressure and low-pressure plasma-enhanced chemical vapor deposition. Diam Relat Mater 13:2147–2151

    Article  Google Scholar 

  36. Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H et al (2004) In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J Am Chem Soc 126:1180–1183

    Article  CAS  Google Scholar 

  37. Andrews RJ, Smith CF, Alexander AJ (2006) Mechanism of carbon nanotube growth from camphor and camphor analogs by chemical vapor deposition. Carbon 44:341–347

    Article  CAS  Google Scholar 

  38. Chhowalla M, Husnu Emrah U (2005) Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 16:2153–2163

    Article  Google Scholar 

  39. Nishii T, Murakami Y, Einarsson E, Masuyama N, Maruyama S (2005) Synthesis of single-walled carbon nanotube film on quartz substrate from carbon monoxide. In: Conference on experimental heat transfer, fluid mechanics, and thermodynamics, Matsushima

    Google Scholar 

  40. Liu C, Chang N, Chang Y, Hsu J, Chang S (2007) Preheated carbon source for carbon nanotube synthesis. In: Proceedings of the 35th international MATADOR conference. University of Taiwan, Taipei, Taiwan, pp 3–6

    Google Scholar 

  41. Yasuo K, Takeru N, Mizuhisa N, Michio N (2007) Infrared reflection absorption spectroscopy investigation of carbon nanotube growth on cobalt catalyst surfaces. Appl Phys Lett 90:073109

    Article  Google Scholar 

  42. Lee K-H, Baik K, Bang J-S, Lee S-W, Sigmund W (2004) Silicon enhanced carbon nanotube growth on nickel films by chemical vapor deposition. Solid State Comm 129:583–587

    Article  CAS  Google Scholar 

  43. Yunyu W, Zhiquan L, Bin L, Paul SH, Zhen Y, Li S et al (2007) Comparison study of catalyst nanoparticle formation and carbon nanotube growth: support effect. J Appl Phys 101:124310

    Article  Google Scholar 

  44. Shiroishi T, Sawada T, Hosono A, Nakata S, Kanazawa Y, Takai M (2003) Low temperature growth of carbon nanotube by thermal CVD with FeZrN catalyst. In: Vacuum microelectronics conference, Osaka, Japan, pp 13–14

    Google Scholar 

  45. Li Y, Kim W, Zhang Y, Rolandi M, Wang D, Dai H (2001) Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B 105:11424–11431

    Article  CAS  Google Scholar 

  46. Grill A, Neumayer D, Singh D (2003) Control of carbon nanotube diameter using CVD or PECVD growth, US Patent 20050089467

    Google Scholar 

  47. Li M, Hu Z, Wang X, Wu Q, Lü Y, Chen Y (2003) Synthesis of carbon nanotube array using corona discharge plasma-enhanced chemical vapor deposition. Chin Sci Bull 48:534–537

    Article  CAS  Google Scholar 

  48. Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19:1063–1077

    Article  CAS  Google Scholar 

  49. Li M-w, Hu Z, Wang X-z, Wu Q, Chen Y, Tian Y-L (2004) Low-temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure. Diam Relat Mater 13:111–115

    Article  CAS  Google Scholar 

  50. Liao XZ, Serquis A, Jia QX, Peterson DE, Zhu YT, Xu HF (2003) Effect of catalyst composition on carbon nanotube growth. Appl Phys Lett 82:2694–2696

    Article  CAS  Google Scholar 

  51. Xie SS, Chang BH, Li WZ, Pan ZW, Sun LF, Mao JM et al (1999) Synthesis and characterization of aligned carbon nanotube arrays. Adv Mater 11:1135–1138

    Article  CAS  Google Scholar 

  52. Kim SH, Zachariah MR (2007) Gas-phase growth of diameter-controlled carbon nanotubes. Mater Lett 61:2079–2083

    Article  CAS  Google Scholar 

  53. Qin LC (1997) CVD synthesis of carbon nanotubes. J Mater Sci Lett 16:457–459

    Article  CAS  Google Scholar 

  54. Khare R, Bose S (2005) Carbon nanotube based composites- a review. J Miner Mater Charact Engg 4:31–46

    Google Scholar 

  55. See CH, Harris AT (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46:997–1012

    Article  CAS  Google Scholar 

  56. Kathyayini H, Nagaraju N, Fonseca A, Nagy JB (2004) Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes. J Mol Catal A 223:129–136

    Article  CAS  Google Scholar 

  57. Zeng X, Sun X, Cheng G, Yan X, Xu X (2002) Production of multi-wall carbon nanotubes on a large scale. Physica B 323:330–332

    Article  CAS  Google Scholar 

  58. Baddour CE, Briens C (2005) Carbon nanotube synthesis: a review. Intern J Chem React Engg 3:1–20

    Google Scholar 

  59. José-Yacamán M, Miki-Yoshida M, Rendón L (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62:657. https://doi.org/10.1063/1.108857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shanmugam, N.R., Prasad, S. (2018). Carbon Nanotubes: Synthesis and Characterization. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_17

Download citation

Publish with us

Policies and ethics