Skip to main content

Nanopackaging: Nanotechnologies and Electronics Packaging

  • Chapter
  • First Online:
Nanopackaging

Abstract

Level one electronics packaging is traditionally defined as the design and production of the encapsulating structure that provides mechanical support, environmental protection, electrical signal and power I/O, and a means of heat dissipation for the Si chip, whether digital or analog, processor, or memory. Level two packaging is then the integration of these packaged chips into a board-level system that similarly provides mechanical support, power and signal delivery and interconnections, and thermal dissipation. Of course, nowadays the chip is often mounted directly on the board (chip-on-board, direct chip attach, flip chip), and the packaging process actually begins with the chip fabrication (wafer-level packaging), e.g., with solder bumping. The underlying principles of the field are covered in textbooks [1–3], and a multitude of others, e.g. [4], are more research focused. The field is inherently multidisciplinary with electrical, mechanical, and thermal design at its core, with all of these subject to reliability studies and material selection. Figure 1.1 shows the history of the electronics package from the vacuum tube to a multi-chip “system in a package” (SiP). The package has always been the limiting factor to system performance, i.e., the Si chip can operate at higher frequencies than the package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tummala R (ed) (2001) Fundamentals of microsystems packaging. McGraw-Hill

    Google Scholar 

  2. Ulrich R, Brown W.D. (ed) (2005) Advanced electronic packaging, 2nd edn. IEEE Press

    Google Scholar 

  3. Dally J, Lall P, Suhling J (2008) Mechanical design of electronic systems. College House, Knoxville

    Google Scholar 

  4. Suhir E, Lee YC, Wong C-P (2007) Micro- & opto-electronic materials & structures, vol 1&2. Springer, New York

    Google Scholar 

  5. Luniak M, Hoeltge H, Brodmann R, Wolter K-J (2006), Optical characterization of electronic packages with confocal microscopy. In: Proceedings of 1st IEEE electronics system integration technology conference (ESTC), Dresden, pp 1318–1322

    Google Scholar 

  6. Koehler B, Bendjus B, Striegler A (2006) Determination of deformation fields and visualization of buried structures by atomic force acoustic microscopy. In: Proceedings of 1st IEEE electronics systemintegration technology conference (ESTC), Dresden, pp 1330–1335

    Google Scholar 

  7. Michel B, Dudek R, Walter H (2005) Reliability testing of polytronics components in the micro-nano region. In: Proceedings of 5th international conference on polymers and adhesives in microelectronics and photonics, Wroclaw, pp 13–15

    Google Scholar 

  8. Koh S, Rajoo R, Tummala R, Saxena A, Tsai KT (2005) Material characterization for nano wafer level packaging application. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 1670–1676

    Google Scholar 

  9. Bansal S, Toimil-Molares E, Saxena A, Tummala RR (2005) Nanoindentation of single crystal and polycrystalline copper nanowires. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 71–76

    Google Scholar 

  10. Wong CKY, Gu H, Xu B, Fyuen MM (2004) A new approach in measuring Cu-EMC adhesion strength by AFM. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 491–495

    Google Scholar 

  11. Dermitzaki ED, Bauer J, Wunderle B, Michel B (2006) Diffusion of water in amorphous polymers at different temperatures using molecular dynamics simulation. In: Proceedings of 1st IEEE electronics systemintegration technology conference (ESTC), Dresden, pp 762–772

    Google Scholar 

  12. Jiang H, Moon K, Dong H, Hua F (2006) Thermal properties of oxide free nano non noble metal for low temperature interconnect technology. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 1969–1973

    Google Scholar 

  13. Sambles JR (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc Roy Soc Lond A 324:339–351

    Article  CAS  Google Scholar 

  14. Ohring M (2002) Materials science of thin films: deposition & structure, 2nd edn. Academic, pp 395–397

    Google Scholar 

  15. Morris JE (2006) Single-electron transistors, In: Dorf RC (ed) The electrical engineering handbook third edition): electronics, power electronics, optoelectronics, microwaves, electromagnetics, and radar, CRC/Taylor & Francis, pp 3.53–3.64

    Google Scholar 

  16. Flinn RA, Trojan PK (1981) Engineering materials & their applications, 2nd edn. Houghton-Mifflin, pp 75–77

    Google Scholar 

  17. Yamaguchi T, Sakai M, Saito N (1985) Optical properties of well-defined granular metal systems. Phys Rev B 32(4):2126–2130

    Article  CAS  Google Scholar 

  18. Hayashi Y, Takizawa H, Inoue M, Niihara K, Suganuma K (2005) Ecodesigns and applications for noble metal nanoparticles by ultrasound process. IEEE Trans Electron Packag Manuf 28(4):338–343. Also Proc. Polytronic 2004

    Article  CAS  Google Scholar 

  19. Jiang H, Moon K, Wong CP (2005) Synthesis of Ag-Cu alloy nanoparticles for lead-free interconnect materials. In: Proceedings of 10th IEEE/CPMT international symposium on advanced packaging materials (APM), Irvine

    Google Scholar 

  20. Pothukuchi S, Li Y Wong CP (2004) Shape controlled synthesis of nanoparticles and their incorporation into polymers. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 1965–1967

    Google Scholar 

  21. Nguyen BMT, Tsung TT, Chang H (2009) New approach of dispersing silver nanopowder in water using ultrasonic atomizer 1.63 MHz. J Vac Sci Technol B 27(3):1586–1589

    Article  CAS  Google Scholar 

  22. Hassan Korbekandi BX, Iravani S (2012) Silver nanoparticles, In: Hashim AA (Ed.) The delivery of nanoparticles, ISBN: 978-953-51-0615-9, InTech

    Google Scholar 

  23. Xu J, Xu J, Bhattacharya S, Moon K-S, Lu J, Englert B, Pramanik P (2006) Large-area processable high k nanocomposite-based embedded capacitors. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 1520–1532

    Google Scholar 

  24. Rasul A, Zhang J, Gamota D (2006) Printed organic electronics with a high K nanocomposite dielectric gate insulator. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp. 167-170

    Google Scholar 

  25. Das R, Poliks M, Lauffer J, Markovich V (2006) High capacitance, large area, thin film, nanocomposite based embedded capacitors. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 1510–1515

    Google Scholar 

  26. Lu J, Moon K-S, Wong C-P (2007) High-k polymer nanocomposites as gate dielectrics for organic electronics applications. In: Proceedings of 57th IEEE electronic component & technology conference (ECTC), Reno, pp 453–457

    Google Scholar 

  27. Kubacki R (2006) Molecularly engineered variable nanocomposites to embed precision capacitors on-chip. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 161–166

    Google Scholar 

  28. Li Y, Pothukuchi S Wong CP (2004) Development of a novel polymer-metal nanocomposite obtained through the route of in situ reduction and it’s dielectric properties. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 507–513

    Google Scholar 

  29. Lu J, Moon K-S, Xu J, Wong CP (2005) Dielectric loss control of high-K polymer composites by coulomb blockade effects of metal nanoparticles for embedded capacitor applications. In: Proceedings of 10th IEEE/CPMT international symposium on advanced packaging materials (APM), Irvine

    Google Scholar 

  30. Xu J, Wong CP (2005) High-K nanocomposites with core-shell structured nanoparticles for decoupling applications. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 1234–1240

    Google Scholar 

  31. Xu J, Wong CP (2004) Effects of the low loss polymers on the dielectric behavior of novel aluminum-filled high-k nano-composites, In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 496–506

    Google Scholar 

  32. Lu J, Moon K-S, Wong CP (2006) Development of novel silver nanoparticles/polymer composites as high K polymer matrix by in-situ photochemical method. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 1841–1846

    Google Scholar 

  33. Wu F, Morris JE (2003) Characterizations of (SiOxCr1−x)N1−y thin film resistors for integrated passive applications, 53rd Electronic Components & Technology Conference (ECTC), New Orleans, pp 161–166

    Google Scholar 

  34. Morris JE (1998) Recent progress in discontinuous thin metal film devices. Vacuum 50(1–2):107–113

    Article  CAS  Google Scholar 

  35. Morris JE, Wu F, Radehaus C, Hietschold M, Henning A, Hofmann K, Kiesow A (2004) Single electron transistors: modeling and fabrication. In: Proceedings of 7th Internat. confer. solid state & integrated circuit technology (ICSICT), Beijing, pp 634–639

    Google Scholar 

  36. Das RN, Lauffer JM, Rosser SG, Poliks MD, Markovich VR (2010) Design, fabrication, electrical characterization and reliability of nanomaterials based embedded passives. In: Proceedings of IMAPS international symposium on microelectronics: fall, vol 2010, No. 1, pp 000847–000854

    Article  Google Scholar 

  37. Benhadjala W, Bord I, Béchou L, Suhir E, Buet M, Rougé F, Ousten Y (2012) Novel core-shell nanocomposites for RF embedded capacitors: processing and characterization. In: Proceedings of 62nd IEEE electronic components and technology conference (ECTC), San Diego, pp 2157–2162

    Google Scholar 

  38. Carlberg B, Norberg J, Liu J (2007) Electrospun nano-fibrous polymer films with barium titanate nanoparticles for embedded capacitor applications. In: Proceedings of 57th IEEE electronic components and technology conference (ECTC), Reno, pp 1019–1026

    Google Scholar 

  39. Yao L, Pan Z, Zhai J, Chen HHD (2017) Novel de sign of highly [110]-oriented barium titanate nanorod array and its application in nanocomposite capacitors. Nanoscale 9:4255. https://doi.org/10.1039/c6nr09250k

    Article  CAS  Google Scholar 

  40. Bi M, Zhang J, Lei M, Bi K (2017) Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites. Nanoscale 9:16386–16395

    Article  CAS  Google Scholar 

  41. Min G (2005) Embedded passive resistors: challenges and opportunities for conducting polymers. Synth Met 153(1–3):49–52

    Article  CAS  Google Scholar 

  42. Na S-M, Park I-S, Park S-Y, Jeong G-H, Suha S-J (2008) Electrical and structural properties of Ta–N thin film and Ta/Ta–N multilayer for embedded resistor. Thin Solid Films 516(16):5465–5469

    Article  CAS  Google Scholar 

  43. Kang SM, Yoon SG, Suh SJ, Yoon DH (2008) Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors. Thin Solid Films 516(11):3568–3571

    Article  CAS  Google Scholar 

  44. Park I-S, Park S-Y, Jeong G-H, Na S-M, Suh S-J (2008) Fabrication of Ta3N5–Ag nanocomposite thin films with high resistivity and near-zero temperature coefficient of resistance. Thin Solid Films 516(16):5409–5413

    Article  CAS  Google Scholar 

  45. Ekstrand L, Kristiansen H, Liu J (2005) Characterization of thermally conductive epoxy nano composites. In: Proceedings of 28th Int. spring seminar on electronics technology (ISSE’05), Vienna, pp 19–23

    Google Scholar 

  46. Fan L, Su B, Qu J, Wong CP (2004) Electrical and thermal conductivities of polymer composites containing nano-sized particles. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 148–154

    Google Scholar 

  47. Jiang H, Moon K-S, Zhu L, Lu J, Wong CP (2005) The role of Self-Assembled Monolayer (SAM) on Ag nanoparticles for conductive nanocomposite. In: Proceedings of 10th IEEE/CPMT international symposium on advanced packaging materials (APM), Irvine. https://doi.org/10.1109/ISAPM.2005.1432087

  48. Das R, Lauffer J, Egitto F (2006) Electrical conductivity and reliability of nano- and micro-filled conducting adhesives for Z-axis interconnections. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 112–118

    Google Scholar 

  49. Markovich VR, Das RN, Rowlands M, Lauffer J Fabrication and electrical performance of Z-axis interconnections: an application of nano-micro-filled conducting adhesives. In: Proceedings of IMAPS 2008 – 41st international symposium on microelectronics, pp 228–235

    Google Scholar 

  50. Moon K-S, Pothukuchi S, Li Y, Wong CP (2004) Nano metal particles for low temperature interconnect technology. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 1983–1988

    Google Scholar 

  51. Li Y, Moon K-S, Wong CP (2005) Improvement of electrical performance of anisotropically conductive adhesives. In: Proceedings of 10th IEEE/CPMT international symposium on advanced packaging materials (APM), Irvine. https://doi.org/10.1109/ISAPM.2005.1432079

  52. Li Y, Moon K-S, Wong CP (2004) Electrical property of anisotropically conductive adhesive joints modified by Self-Assembled Monolayer (SAM). In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 1968–1974

    Google Scholar 

  53. Li Y, Wong CP (2006) Novel lead free nano scale Non-Conductive Adhesive (NCA) interconnect materials for ultra-fine pitch electronic packaging applications. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 1239–1245

    Google Scholar 

  54. Zhao H, Liang T, Liu B (2007) Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles. Int J Adhes Adhes 27:429–433

    Article  CAS  Google Scholar 

  55. Kolbe J, Arp A, Calderone F, Meyer EM, Meyer W, Schaefer H, Stuve M (2005) Inkjettable conductive adhesive for use in microelectronics and Microsystems technology. In: Proceedings of 5th international conference on polymers and adhesives in microelectronics and photonics, Wroclaw, Poland, pp 160–163

    Google Scholar 

  56. Joo S, Baldwin DF (2005) Demonstration for rapid prototyping of micro-systems packaging by data-driven chip-first process using nanoparticles metal colloids. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 1859–1863

    Google Scholar 

  57. Moscicki A, Felba J, Sobierajski T, Kudzia J, Arp A, Meyer W (2005) Electrically conductive formulations filled nano size silver filler for ink-jet technology. In: Proceedings of 5th international conference on polymers and adhesives in microelectronics and photonics, Wroclaw, pp 40–44

    Google Scholar 

  58. Bai JG, Creehan KD, Kuhn HA (2007) Inkjet printable nanosilver suspensions for enhanced sintering quality in rapid manufacturing. Nanotechnology 18:1–5

    CAS  Google Scholar 

  59. Reinhold I, Hendriks CE, Eckardt R, Kranenburg JM, Perelaer J, Baum RR, Schubert US (2009) Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J Mater Chem 19:3384–3388. https://doi.org/10.1039/B823329B

    Article  CAS  Google Scholar 

  60. Perelaer J, de Gans BJ, Schubert US (2006) Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater 18(16):2101–2104

    Article  CAS  Google Scholar 

  61. Perelaer J, Hendriks CE, de Laat AWM, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20(16):165303

    Article  CAS  Google Scholar 

  62. Peng W, Hurskainen V, Hashizume K, Dunford S, Quander S, Vatanparast R (2005) Flexible circuit creation with nano metal particles. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 77–82

    Google Scholar 

  63. Bai JG, Zhang ZZ, Calata JN, Lu G-Q (2006) Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans Components Packag Technol 29(3):589–593

    Article  CAS  Google Scholar 

  64. Nakamoto M, Yamamoto M, Kashiwagi Y, Kakiuchi H, Tsujimoto T, Yoshida Y (2007) A variety of silver nanoparticle pastes for fine electronic circuit patter formation. In: Proceedings of 6th international conference on polymers and adhesives in microelectronics and photonics, Tokyo

    Google Scholar 

  65. Moscicki A, Felba J, Gwiazdzinski P, Puchalski M (2007) Conductivity improvement of microstructures made by nano-size-silver filled formulations. In: Proceedings of 6th international conference on polymers and adhesives in microelectronics and photonics, Tokyo

    Google Scholar 

  66. Wakuda D, Hatamura M, Suganuma K (2007) Novel room temperature wiring process of Ag nanoparticle paste. In: Proceedings of 6th international conference on polymers and adhesives in microelectronics and photonics, Tokyo

    Google Scholar 

  67. Wakuda D, Hatamura M, Suganuma K (2007) Novel method for room temperature sintering of Ag nanoparticle paste in air. Chem Phys Lett 441:305–308

    Article  CAS  Google Scholar 

  68. Wakuda D, Kim K-S, Suganuma K (2008) Room temperature sintering of Ag nanoparticles by drying solvent. Scr Mater 59:649–652

    Article  CAS  Google Scholar 

  69. Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ, Poulikakos D (2007) All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18(34):345202

    Article  CAS  Google Scholar 

  70. Dong T-Y, Chen W-T, Wang C-W, Chen C-P, Chen C-N, Lin M-C, Song J-M, Chen I-G, Kao T-H (2009) One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films. Phys Chem Chem Phys 11:6269–6275. https://doi.org/10.1039/B900691E

    Article  CAS  Google Scholar 

  71. Kim NR, Lee YJ, Lee C, Koo J, Lee HM (2016) Surface modification of oleylamine-capped Ag–Cu nanoparticles to fabricate low-temperature-sinterable Ag–Cu nanoink. Nanotechnology 27(34):345706. https://doi.org/10.1088/0957-4484/27/34/345706

    Article  CAS  Google Scholar 

  72. Zhang Y, Zhu P, Sun R, Wong C (2013) A simple way to prepare large-scale copper nanoparticles for conductive ink in printed electronics, 2013 14th International Conference on Electronic Packaging Technology (ICEPT), Dalian. https://doi.org/10.1109/ICEPT.2013.6756479

  73. Zhang Y, Zhu P, Li G, Zhao T, Sun R, Wong C-P (2016) Size-controllable copper nanomaterials for flexible printed electronics. In: Proceedings of 66th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 2529–2534. https://doi.org/10.1109/ECTC.2016.137

  74. Nahar M, Keto JW, Becker MF, Kovar D (2015) Highly conductive Nanoparticulate films achieved at low sintering temperatures. J Electron Mater 44(8):2559–2565

    Article  CAS  Google Scholar 

  75. Weber C, Hutter M, Schmitz S, Lang K-D (2015) Dependency of the porosity and the layer thickness on the reliability of Ag sintered joints during active power cycling. In: Proceedings of 65th IEEE electronic components and technology conference (ECTC), San Diego. https://doi.org/10.1109/ECTC.2015.7159854

  76. Gadaud P, Caccuri V, Berteau D, Carr J, Milhet X (2016) Ageing sintered silver: relationship between tensile behavior, mechanical properties and the nanoporous structure evolution. Mater Sci Eng A 669:379–386

    Article  CAS  Google Scholar 

  77. Chen C, Suganuma K, Iwashige T, Sugiura K, Tsuruta K High temperature reliability of sintered microporous ag o electroplated Ag, Au, and sputtered Ag metallization substrates. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-o17-8087-8

  78. Chua ST, Siow KS (2016) Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300°C. J Alloy Compd 687:486–498

    Article  CAS  Google Scholar 

  79. Usui M, Kimura H, Satoh T, Asada T, Tamaguchi S, Kato M (2016) Degradation of a sintered Cu nanoparticle layer studied by synchrotron radiation computed laminography. Microelectron Reliab 63:152–158

    Article  CAS  Google Scholar 

  80. Kim J, Keane B, Park JS, Kim WS (2014) Stretchable inter-connection by printed silver nano-ink. In: Proceedings of 14th IEEE international conference on nanotechnology (NANO), Toronto, pp 412–415

    Google Scholar 

  81. Song B, Moon K-S, Wong CP (2017) Stretchable and electrically conductive composites fabricated from polyurethane and silver nano/microstructures. In: Proceedings of 67th IEEE electronic components and technology conference (ECTC), Orlando, pp 2181–2186

    Google Scholar 

  82. Bai JG, Zhang ZZ, Calata JN, Lu GQ (2005) Characterization of low-temperature sintered nanoscale silver paste for attaching semiconductor devices. In: Proceedings of 7th IEEE CPMT conference on high density microsystem design and packaging and component failure analysis (HDP’05), Shanghai, pp 272–276

    Google Scholar 

  83. Chhasatia V, Zhou F, Sun Y, Huang L, Wang H (2008) Design optimization of custom engineered silver-nanoparticle thermal interface materials. In: Proceedings of 11th intersociety conference on thermal & thermomechanical phenomena in electronic systems (ITHERM), pp 419–427

    Google Scholar 

  84. Morita T, Ide E, Yasuda Y, Hirose A, Kobayashi K (2008) Study of bonding technology using silver nanoparticles. Jpn J Appl Phys 47(8):6615–6622

    Article  CAS  Google Scholar 

  85. Kiryukhina K, Le Trong H, Tailhades P, Lacaze J, Baco V, Gougeon M, Courtade F, Dareys S, Vendierd O, Raynaud L (2013) Silver oxalate-based solders: new materials for high thermal conductivity microjoining. Scr Mater 68:623–626

    Article  CAS  Google Scholar 

  86. Markondeya Raj P, Muthana P, Danny Xiao T, Wan L, Balaraman D, Abothu IR, Bhattacharya S, Swaminathan M, Tummala R (2005) Magnetic nano-composites for organic compatible miniaturized antennas and inductors. In: Proceedings of 10th IEEE/CPMT international symposium on advanced packaging materials (APM), Irvine

    Google Scholar 

  87. Doraiswami R, Tummala R (2005) Nano-composite lead-free interconnect and reliability. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 871–873

    Google Scholar 

  88. Kim S, Shamim A, Georgiadis A, Aubert H, Tentzeris MM (2016) Fabrication of fully inkjet-printed Vias and SIW structures on thick polymer substrates. IEEE Trans Compon Packag Manuf Technol 6(3):486–496

    Article  Google Scholar 

  89. Khorramdel B, Mantysalo M (2014) Inkjet filling of TSVs with silver nanoparticle ink. In: Proceedings of IEEE electronics system integration conference (ESTC), Helsinki

    Google Scholar 

  90. Zinn AA, Stoltenberg RM, Beddow J, Chang J (2012) Nano copper based solder-free electronic assembly material. IPC Proceedings. (See also Nanotech, 2, pp 71–74)

    Google Scholar 

  91. Van Zeijl HW, Carisey Y, Damian A, Poelma RH, Zinn A, Zhang CQ (2016) Metallic nanoparticle based interconnect for heterogeneous 3D integration. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 217–224

    Google Scholar 

  92. Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Xia Y, Moon J (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater 18(5):679–686

    Article  CAS  Google Scholar 

  93. Jeong S, Lee SH, Jo Y, Lee SS, Seo Y-H, Ahn BW, Kim G, Jang G-E, Park J-U, Ryu B-H, Choi Y (2013) Air-stable, surface-oxide free Cu nanoparticles for highly conductive Cu ink and their application to printed graphene transistors. J Mater Chem C 1:2704–2710

    Article  CAS  Google Scholar 

  94. Dai YY, Ng MZ, Anantha P, Lin YD, Li ZG, Gan CL, Tan CS (2016) Enhanced copper micro/nano-particle mixed paste sintered at low temperature for 3D interconnects. Appl Phys Lett 108:263103. https://doi.org/10.1063/1.4954966

    Article  CAS  Google Scholar 

  95. Dai YY, Ng MZ, Gan CL, Tan CS (2015) Copper micro and nano particles mixture for 3D interconnections application. In: Proceedings of IEEE international 3D systems integration conference, Sendai, TS8.9.1-TS8.9.5. https://doi.org/10.1109/3DIC.2015.7334614

  96. Zürcher J, Del Carro L, Schlottig G, Wright DN, Vardøy A-SB, Visser Taklo MM, Mills T, Zschenderlein U, Wunderlle B (2016) All-copper flip chip interconnects by pressure less and low temperature nanoparticle sintering. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 343–349. https://doi.org/10.1109/ECTC.2016.42

  97. Wu Z, Cai J, Wang Q, Wang J (2017) Low temperature Cu-Cu bonding using copper nanoparticles fabricated by high pressure PVD, AIP Adv 7, 035306. https://doi.org/10.1063/1.4978490

    Article  CAS  Google Scholar 

  98. Dai T, Ng MZ, Gan CL, Tan CS (2016) Emerging copper nano-particle paste in electronics packaging. In: Proceedings of electronics packaging technology conference (EPTC), Singapore

    Google Scholar 

  99. Zürcher J, Yu K, Schlottig G, Baum M, Visser Taklo MM, Wunderle B, Warszyński P, Brunschwiler T (2015) Nanoparticle assembly and sintering towards all-copper flip chip interconnects. In: Proceedings of 65th IEEE electronic components and technology conference (ECTC), San Diego. https://doi.org/10.1109/ECTC.2015.7159734

  100. Li J, Shi T, Yu X, Cheng C, Fan J, Liao G, Tang Z (2017) Low-temperature and low-pressure Cu-Cu bonding by pure Cu nanosolder paste for wafer-level packaging. In: Proceedings of 67th IEEE electronic components and technology conference (ECTC), Orlando, pp 976–981

    Google Scholar 

  101. Ide E, Angata S, Kobayashi KF (2005) Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater 53(8):2385–2393

    Article  CAS  Google Scholar 

  102. Wu Z, Wang Q, Tan L, Liu Z, Seo S-K, Cho T-J, Cai J (2016) Low temperature Cu-Cu bonding using Ag nanoparticles by PVD. In: Proceedings of 6th electronic system-integration technology conference (ESTC), Grenoble. https://doi.org/10.1109/ESTC.2016.7764715

  103. Oppermann H, Dietrich L, Klein M, Wunderle B (2010) Nanoporous interconnects. In: Proceedings of 4th IEEE electronics system integration conference (ESTC), Berlin

    Google Scholar 

  104. Matsunaga K, Kim M-S, Nishikawa H, Saito M, Mizuno J (2014) Relationship between bonding conditions and strength for joints using a Au nanoporous sheet. In: Proceedings of IEEE electronics systemintegration conference (ESTC), Helsinki

    Google Scholar 

  105. Shahane N, Mohan K, Behera R, Antoniou A, Markondeya PR, Smet V, Tummala R (2016) Novel high-temperature, high-power handling all-Cu interconnections through low-temperature sintering of nanocopper foams. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 829–836

    Google Scholar 

  106. Suganuma K, Jiu J (2017) Advanced bonding technology based on nano- and micro-metal pastes. In: Lu D, Wong C (eds) Materials for advanced packaging. Springer, Cham, pp 589–626

    Chapter  Google Scholar 

  107. Patel GR, Thakar NA, Pandya TC (2016) Size and shape dependent melting temperature and thermal expansivity of metallic and semiconductor nanoparticles, AIP Conference Proceedings 1731, 050042; https://doi.org/10.1063/1.4947696

  108. Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66:013208

    Article  CAS  Google Scholar 

  109. Chen CL, Lee J-G, Arakawa K, Mori H (2011) Comparative study on size dependence of melting temperatures of pure metal and alloy nanoparticles. Appl Phys Lett 99:013108. https://doi.org/10.1063/1.3607957

    Article  CAS  Google Scholar 

  110. Jiang H, Moon K-s, Hua F, Wong CP (2007) Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders. Chem Mater 19(18):4482–4485. https://doi.org/10.1021/cm0709976

    Article  CAS  Google Scholar 

  111. Liu J, Andersson C, Gao Y, Zhai Q (2008) Recent development of nano-solder paste for electronics interconnect applications. In: Proceedings of 10th IEEE electronics packaging technology conference (EPTC), Singapore, pp 84–93. https://doi.org/10.1109/EPTC.2008.4763416

  112. Zou CD, Gao YL, Yang B, Xia XZ, Zhai QJ, Andersson C, Liu J (2009) Nanoparticles of the lead-free solder alloy Sn-3.0Ag-0.5Cu with large melting temperature depression. J Electron Mater 38(2):351–355

    Article  CAS  Google Scholar 

  113. Mishra R, Zemanova A, Kroupab A, Flandorfer H, Ipser H (2012) Synthesis and characterization of Sn-rich Ni–Sb–Sn nanosolders. J Alloy Comp 513:224–229

    Article  CAS  Google Scholar 

  114. Shibuta Y, Suzuki T (2010) Melting and solidification point of fcc-metal nanoparticles with respect to particle size: a molecular dynamics study. Chem Phys Lett 498(4–6):323–327

    Article  CAS  Google Scholar 

  115. Koppesa JP, Grossklausb KA, Muzaa AR, Rao Revurc R, Senguptac S, Raed A, Stacha EA, Handwerkera CA (2012) Utilizing the thermodynamic nanoparticle size effects for low temperature Pb-free solder. Mater Sci Eng B 177(2):197–204

    Article  CAS  Google Scholar 

  116. Wernicki E, Fratto E, Shu Y, Gao F, Gu Z (2016) Micro-scale solder joints between Cu-Cu wires formed by nanoparticle enabled lead-free solder pastes. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 1203–1208

    Google Scholar 

  117. Yin Q, Gao F, Wang J, Gu Z, Stach EA, Zhou G (2017) Length-dependent melting behavior of Sn nanowires. J Mater Res 32:1194–1202

    Article  CAS  Google Scholar 

  118. Gao F, Rajathurai K, Cui Q, Zhou G, NkengforAcha I, Gu Z (2012) Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods. Appl Surf Sci 258:7507–7514

    Article  CAS  Google Scholar 

  119. Zhang H, Zhang J, Lan Q, Ma H, Ke Q, Inkson BJ, Mellors NJ, Xue D, Peng Y (2014) Nanoscale characterization of 1D Sn-3.5Ag nanosolders and their application into nanowelding at the nanoscale. Nanotechnology 25(42):425301

    Article  CAS  Google Scholar 

  120. Du L, Shi T, Tang Z, Shen J, Liao G Low temperature Cu nanorod/Sn/Cu nanorod bonding technology for 3D integration. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 951–956

    Google Scholar 

  121. Yin QY, Gao F, Gu Z, Stach EA, Zhou GW (2015) In-situ visualization of metallurgical reactions in nanoscale cu/Sn diffusion couples. Nanoscale 7:4984–4994

    Article  CAS  Google Scholar 

  122. Yin Q, Gao F, Gu Z, Wang J, Stach EA, Zhou G (2017) Interface dynamics in one-dimensional nanoscale cu/Sn couples. Acta Mater 125:136–144

    Article  CAS  Google Scholar 

  123. Gao F, Yin Q, Wang J, Zhou G, Gu Z (2016) Synthesis and characterization of one-dimensional Cu-Sn nanowire diffusion couples for nanowire assembly and interconnection. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 2329–2334

    Google Scholar 

  124. Radmilovic VV, Goebelt M, Ophus C, Christiansen S, Spiecker E, Radmilovic VR (2017) Low temperature solid-state wetting and formation of nanowelds in silver nanowires. Nanotechnology 28:385701

    Article  Google Scholar 

  125. Guan W, Verma SC, Gao Y, Andersson C, Zhai Q, Liu J (2006) Characterization of nanoparticles of lead free solder alloys. In: Proceedings of 1st IEEE electronics systemintegration technology conference (ESTC), Dresden, pp 7–12

    Google Scholar 

  126. Mohan Kumar K, Kripesh V, Tay AAO (2006) Sn-Ag-Cu lead-free composite solders for ultra-fine-pitch wafer-level packaging. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 237–243

    Google Scholar 

  127. Amagai M (2006) A study of nano particles in SnAg-based lead free solders for intermetallic compounds and drop test performance. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 1170–1190

    Google Scholar 

  128. Kripesh V, Mohankumar K, Tay A (2006) Properties of solders reinforced with nanotubes and nanoparticles. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego

    Google Scholar 

  129. Lee A, Subramanian KN, Lee J-G (2005) Development of nanocomposite lead-free electronic solders. In: Proceedings of 10th IEEE/CPMT international symposium on advanced packaging materials (APM), Irvine. https://doi.org/10.1109/ISAPM.2005.1432089

  130. Shin J-W, Choi Y-W, Kim YS, Kang UB, Jee YK, Paik K-W (2013) Effect of NCFs with Zn-nanoparticles on the interfacial reactions of 40 um pitch Cu pillar/Sn-Ag bump for TSV interconnection. In: Proceedings of 63rd IEEE electronic components and technology conference (ECTC), Las Vegas, pp 1024–1030

    Google Scholar 

  131. Kościelski M, Bukat K, Jakubowska M, Młożniak A (2010) Application of silver nanoparticles to improve wettability of SnAgCu solder paste. In: Proceedings of 33rd international spring seminar on electronics technology (ISSE). https://doi.org/10.1109/ISSE.2010.5547345

  132. Jakubowska M, Bukat K, Kościelski M, Młożniak A, Niedźwiedź W, Słoma M, Sitek J (2010) Investigation of properties of the SAC solder paste with the silver nanoparticle and carbon nanotube additives and the nano solder joints. In: Proceedings of 3rd electronic system-integration technology conference (ESTC). https://doi.org/10.1109/ESTC.2010.5642884

  133. Tsao LC, Wang BC, Chang CW, Wu MW (2010) Effect of nano-TiO2 addition on wettability and interfacial reactions of Sn0.7Cu composite solder/Cu solder joints. In: Proceedings of 11th international conference on electronic packaging technology & high density packaging (ICEPT-HDP), Xi’an, pp 250–253

    Google Scholar 

  134. Boareto JC, Rodrigues GVS, Mastropietro MF, Wendhausen PAP, Wolter K-J (2010) Introduction of nanosized Al2O3 in Sn-Ag3,5 solders by mechanical alloying. In: Proceedings of electronics system-integration conference (ESTC), Berlin. https://doi.org/10.1109/ESTC.2010.5642940

  135. Lee A, Subramanian KN, Lee J-G (2005) Development of nanocomposite lead-free electronic solders. In: Proceedings of international symposium on advanced packaging materials: processes, properties and interfaces (APM). https://doi.org/10.1109/ISAPM.2005.1432089

  136. Chellvarajoo S, Abdullah MZ, Khor CY (2015) Effects of diamond nanoparticles reinforcement into lead-free Sn–3.0Ag–0.5Cu solder pastes on microstructure and mechanical properties after reflow soldering process. Mater Des 82:206–215

    Article  CAS  Google Scholar 

  137. Chen S, Luo X, Jiang D, Ye L, Edwards M, Liu J (2015) Sn–3.0Ag–0.5Cu nanocomposite solder reinforced with Bi2Te3 nanoparticles. IEEE Trans Compon Packag Manuf Technol 5(8):1186–1196

    Article  CAS  Google Scholar 

  138. Kim K-H, Yoo S, Yoon J, Yim S, Baek B-G, Yoon JH, Jung D, Jung JP (2016) Joint properties and thermomechanical reliability of nanoparticle-added Sn-Ag-Cu solder paste. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 1822–1826

    Google Scholar 

  139. Su H, Chan YC (2010) Drawbacks of the nanoparticle reinforced lead-free BGA solder joints. In: Proceedings of electronics system-integration conference (ESTC), Berlin. https://doi.org/10.1109/ESTC.2014.6962816

  140. Noor EEM, Singh A, Chuan YT (2013) A review: influence of nano particles reinforced on solder alloy. Soldering Surf Mt Technol 25(4):229–224

    Article  CAS  Google Scholar 

  141. Lall P, Islam S, Suhling J, Tian G (2005) Nano-underfills for high-reliability applications in extreme environments. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 212–222

    Google Scholar 

  142. Sun Y, Zhang Z, Wong CP (2005) Photo-definable nanocomposite for wafer level packaging. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 179–184

    Google Scholar 

  143. Sun Y, Wong CP (2004) Study and characterization on the nanocomposite underfill for flip chip applications. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 477–483

    Google Scholar 

  144. Sun Y, Zhang Z, Wong CP (2004) Fundamental research on surface modification of nano-size silica for underfill applications. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 754–760

    Google Scholar 

  145. Lin Z, Liu Y, Moon K-S, Wong CP (2013) Novel surface modification of nanosilica for low stress underfill. In: Proceedings of 63rd IEEE electronic components and technology conference (ECTC), Las Vegas, pp 773–777

    Google Scholar 

  146. Li G, Zhu P, Zhao T, Sun R, Lu D, Zhang G, Zeng X, Wong C-P (2016) Mesoporous silica nanoparticles: a potential inorganic filler to prepare polymer composites with low CTE and low modulus for electronic packaging applications. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 2134–2139

    Google Scholar 

  147. Nagamatsu T, Honjo K, Ebisawa K, Ishimatsu T, Saito T, Mori D, Motomura D, Yagi H (2016) Use of non-conductive film (NCF) with nano-sized filler particles for solder interconnect: research and development on NCF material and process characterization. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 923–928

    Google Scholar 

  148. Goicochea JV, Brunschwiler T, Zürcher J, Wolf H, Matsumoto K, Michel B (2012) Enhanced centrifugal percolating thermal underfills based on neck formation by capillary bridging. In: Proceedings of 13th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm), San Diego. https://doi.org/10.1109/ITHERM.2012.6231563

  149. Braun T, Hausel F, Bauer J, Wittler O, Mrossko R, Becker K-F, Oestermann U, Bader V, Minge C, Aschenbrenner R, Reichl H (2008) Nano-particle enhanced encapsulants for improved humidity resistance. In: Proceedings of 58th IEEE electronic components and technology conference (ECTC), Lake Buena Vista, pp 198–206

    Google Scholar 

  150. Kang M-S, Lee T-Y, Kim M-S, Yoo S (2016) Light efficiency of high brightness LED package with nanoparticle-mixed silicone encapsulant. In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas. https://doi.org/10.1109/ESTC.2016.7764729

  151. Hayashi K, Nagasawa T, Matsumoto K, Kawai S (2013) Nano-silica composite laminate. In: Proceedings of 63rd IEEE electronic components and technology conference (ECTC), Las Vegas, pp 929–936

    Google Scholar 

  152. Zhu L, Sun Y, Xu J, Zhang Z, Hess DW, Wong CP (2005) Aligned carbon nanotubes for electrical interconnect an thermal management. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 44–50

    Google Scholar 

  153. Chen G, Davis RC, Futaba DN, Sakurai S, Kobashi K, Yumura M, Hata K (2016) A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties. Nanoscale 8:162–171

    Article  CAS  Google Scholar 

  154. Kawabata A, Sato S, Nozue T, Hyakushima T, Norimatsu M, Mishima M, Murakami T, Kondo D, Asano K, M. Ohfuti, H. Kawarada, Sakai T, Nihei M, Awano Y (2008) Robustness of CNT via interconnect fabricated by low temperature process over a high-density current. In: Proceedings of IEEE international interconnect conference, pp 237–239

    Google Scholar 

  155. Liu Z, Lijie C, Kar S, Ajayan PM, Lu J-Q (2009) Fabrication and electrical characterization of densified carbon nanotube micropillars for IC interconnection. IEEE Trans Nanotechnol 8(2):196–203

    Article  Google Scholar 

  156. Kaur S, Sahoo S, Ajayan P, Kane R (2007) Capillary-driven assembly of carbon nanotubes on substrates into dense vertically aligned arrays. Adv Mater 19(19):2984–2297

    Article  CAS  Google Scholar 

  157. Wang T, Chen S, Jiang D, Fu Y, Jeppesen K, Ye L, Liu J Through-silicon vias filled with densified and transferred carbon nanotube forests. IEEE Electron Device Lett 33(3):420–422

    Article  CAS  Google Scholar 

  158. Srivastava A, Liu XH, Banadaki YM (2016) Interconnect challenges for 2D and 3D integration. In: Todri-Sanial A et al. (eds) Carbon nanotubes for interconnects, Springer

    Google Scholar 

  159. Wang T, Jeppson K, Liu J (2010) Dry demsification of carbon nanotube bundles. Carbon 48(13):3795–3801

    Article  CAS  Google Scholar 

  160. Xiao Z, Chai Y, Li Y, Sun M, Chan PCH (2010) Integration of horizontal carbon nanotube devices on silicon substrate using liquid evaporation. In: Proceedings of 60th electronic components and technology conference (ECTC), Las Vegas, pp 943–947

    Google Scholar 

  161. Yang C, Xiao Z, Chan PCH (2010) Horizontally aligned carbon nanotube bundles for interconnect application: diameter-dependent contact resistance and mean free path. Nanotechnology 21(23):235705

    Article  CAS  Google Scholar 

  162. Heimann M, Wirts-Ruetters M, Boehme B, Wolter K-J (2008) Investigations of carbon nanotubes epoxy composites for electronics packaging. In: Proceedings of 58th electronic components & technology conference (ECTC), Lake Buena Vista, pp 1731–1736

    Google Scholar 

  163. Chiu J-C, Chang C-M, Lin J-W, Cheng W-H (2008) High electromagnetic shielding of multi-wall carbon nanotube composites using ionic liquid dispersant. In: Proceedings of 58th electronic components & technology conference (ECTC), Lake Buena Vista, pp 427–430

    Google Scholar 

  164. Spitalsky Z, Tsoukleri G, Tasis D, Krontiras C, Georga SN, Galiotis C (2009) High volume fraction carbon nanotube-epoxy composites. Nanotechnology 20:405702

    Article  CAS  Google Scholar 

  165. Platek B, Urbanski K, Falat T, Felba J (2011) The method of carbon nanotube dispersing for composites used in electronic packaging. In: Proceedings of 11th IEEE international conference on nanotechnology (IEEE-NANO), Portland, pp 102–105

    Google Scholar 

  166. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale 7:10294–10329

    Article  CAS  Google Scholar 

  167. Inam F, Wong DWY, Kuwata M, Peijs T (2010) Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J Nanomater 453420

    Google Scholar 

  168. Banhart F (2009) Interactions between metals and carbon nanotubes: at the interface between old and new materials. Nanoscale 1:201–213

    Article  CAS  Google Scholar 

  169. Yan KY, Xue QZ, Zheng QB, Hao LZ (2007) The interface effect of the effective electrical conductivity of carbon nanotube composites. Nanotechnology 18:255705

    Article  CAS  Google Scholar 

  170. Lee DC, Kwon G, Kim H, Lee H-J, Sung BJ (2012) Three-dimensional Monte Carlo simulation of the electronic conductivity of carbon nanotube/polymer composites. Appl Phys Express 5:045101

    Article  CAS  Google Scholar 

  171. Oh Y, Suh D, Kim Y, Lee E, Mok JS, Choi J, Baik S (2008) Silver-plated carbon nanotubes for silver/conducting polymer composites. Nanotechnology 19:495602

    Article  CAS  Google Scholar 

  172. Falat T, Felba J, Matkowski P, Platek B, Demont P, Marcq F, Monfraix P, Mosicicki A, Poltorak K Electrical, thermal and mechanical properties of epoxy composites with hybrid micro- and nano-sized fillers for electronic packaging. In: Proceedings of 11th IEEE conference on nanotechnology (IEEE-NANO), 201, Portland, pp 97–101

    Google Scholar 

  173. Yamamoto G, Omori M, Hashida T, Kimura H (2008) A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 9:315708

    Article  CAS  Google Scholar 

  174. Fondjo F, Lee DS, Howe C, Yeo W-H, Kim J-H (2017) Symthesis of a Soft nanocomposite for flexible, wearable bioelectronics. In: Proceedings of 67th electronic components and technology conference (ECTC), Orlando, pp 780–784

    Google Scholar 

  175. Buchheim J, Park HG (2016) Failure mechanism of the polymer infiltration of carbon nanotube forests. Nanotechnology 27:464002

    Article  CAS  Google Scholar 

  176. Aryasomayajula L, Rieske R, Wolter K-J (2011) Application of copper-carbon nanotubes composite in packaging interconnects. In: Proceedings of 34th international spring seminar on electronics technology (ISSE), Tratanska Lomnica, pp 531–536

    Google Scholar 

  177. Aryasomayajula L, Wolter K-J (2013) Carbon nanotube composites for electronic packaging applications: a review. J Nanotechnol 296517

    Google Scholar 

  178. Chai Y, Chan PCH, Fu Y, Chuang YC, Liu CY (2008) Copper/carbon nanotube composite interconnect for enhanced electromigration resistance. In: Proceedings of 58th electronic components & technology conference (ECTC), Lake Buena Vista, pp 412–420

    Google Scholar 

  179. Ferrer-Anglada N, Gomis V, El-Hamechi Z, Dettlaff Weglikovska U, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT-conducting polymers, CNT-Cu. Phys Stat Sol A 203(6):1082–1087

    Article  CAS  Google Scholar 

  180. Jiang H, Liu B, Huang Y, Hwang KC (2004) Thermal expansion of single wall carbon nanotubes. J Eng Mater Technol 126:265–270

    Article  CAS  Google Scholar 

  181. Yang Z, Kang Z, Bessho T (2017) Two-component spin-coated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting. Nanotechnology 28:105607

    Article  CAS  Google Scholar 

  182. Peng Y, Chen Q (2012) Fabrication of copper/multi-walled carbon nanotube hybrid nanowires using electroless copper deposition activated with silver nitrate. J Electrochem Soc 159(2):D72–D76

    Article  CAS  Google Scholar 

  183. Wang F, Arai S, Endo M (2004) Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process. Electrochem Commun 6:1042–1054

    Article  CAS  Google Scholar 

  184. Sun Y, Onwaona-Agyeman B, Miyasato T (2011) Controlling the resistivity of multi-walled carbon nanotube networks by copper encapsulation. Mater Lett 65:3187–3190

    Article  CAS  Google Scholar 

  185. Jo Y, Kim JY, Jung S, Ahn BY, Lewis JA, Choi Y, Jeong S (2017) 3D polymer objects with electronic components interconnected via conformally printed electrodes. Nanoscale 9:14798–14803

    Article  CAS  Google Scholar 

  186. Tsai P-C, Jeng Y-R (2015) Enhanced mechanical properties and viscoelastic characterizations of nanonecklace-reinforced carbon nanotube/copper composite films. Appl Surf Sci 326:131–138

    Article  CAS  Google Scholar 

  187. Yoo JJ, Song JY, Yu J, Lyeo HK, Lee S, Hahn JH (2008) Multi walled carbon nanotube/nanocrystalline copper nanocomposite film as an interconnect material. In: Proceedings of 58th electronic components & technology conference (ECTC), Lake Buena Vista, pp 1282–1286

    Google Scholar 

  188. Arai S (2010) Takashi Saito and Morinobu Endo. J Electrochem Soc 157(3):D147–D153

    Article  CAS  Google Scholar 

  189. Chowdhury T, Rohan JF (2013) Chapter 16: carbon nanotube composites for electronic interconnect applications, In: Satoru Suzuki (ed) Synthesis and applications of carbon nanotubes and their composites, InTech. https://doi.org/10.5772/52731

    Google Scholar 

  190. Zhang K, Yuen MMF, Miao J-Y, Wang N, Xiao DG-W (2006) Thermal interface material with aligned CNT growing directly on the heat sink surface and its application in HB-LED packaging. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 177–182

    Google Scholar 

  191. Chen S, Jiang D, Ye L, Liu J (2014) A solder joint with vertically aligned carbon nanofibers as reinforcements. In: Proceedings of electronics system-integration conference (ESTC), Helsinki. https://doi.org/10.1109/ESTC.2014.6962851

  192. Nai SML, Wei J, Gupta M (2006) Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater Sci Eng A423:166–169

    Article  CAS  Google Scholar 

  193. Wang T, Jonsson M, Nystrom E, Mo Z, Campbell EEB, Liu J (2006) Development and characterization of microcoolers using carbon nanotubes. In: Proceedings of 1st IEEE electronics systemintegration technology conference (ESTC), Dresden, pp 881–885

    Google Scholar 

  194. Xu J, Fisher TS (2006) Enhanced thermal contact conductance using carbo nanotube array interfaces. IEEE Trans Components Packag Technol 29(2):261–267

    Article  CAS  Google Scholar 

  195. Pradham NR, Duan H, Liang J, Iannacchione GS (2009) The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 20:245705

    Article  CAS  Google Scholar 

  196. Gu W, Lin W, Yao Y, Wong C (2011) Synthesis of high quality, closely packed vertically aligned carbon nanotube array and a quantitative study of the influence of packing density on the collective thermal conductivity. In: Proceedings of 61st IEEE electronic component & technology conference (ECTC), Lake Buena Vista, pp 1239–1243

    Google Scholar 

  197. Lin W, Wong CP (2011) A highly reliable measurement of thermal transport properties of vertically aligned carbon nanotube arrays. In: Proceedings of 61st IEEE electronic component & technology conference (ECTC), Lake Buena Vista, pp 1536–15400

    Google Scholar 

  198. Platek B, Falat T, Felba J (2010) The impact of carbon nanotubes diameter on their thermal conductivity – non-equilibrium molecular dynamics approach. In: Proceedings of 3rd electronic system-integration technology conference (ESTC), Berlin. https://doi.org/10.1109/ESTC.2010.5642968

  199. Annita Zhong H, Rubinsztajn S, Gowda A, Esler D, Gibson D, Bucklet D, Osaheni J, Tonapi S (2005) Utilization of carbon fibers in thermal management of microelectronics. In: Proceedings of 10th IEEE/CPMT international symposium on advanced packaging materials (APM), Irvine. https://doi.org/10.1109/ISAPM.2005.1432086

  200. Zhang K, Xiao G-W, Wong CKY, Gu H-W, Yuen MMF, Chan PCH, Xu B (2005) Study on thermal interface material with carbon nanotubes and carbon black in high-brightness LED packaging with flip-chip technology. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 60–65

    Google Scholar 

  201. Lee T-M, Chiou K-C, Tseng F-P, Huang C-C (2005) High thermal efficiency carbon nanotube-resin matrix for thermal interface materials. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 55–59

    Google Scholar 

  202. Liu J, Olorunyomi MO, Lu X, Wang WX, Aronsson T, Shangguan D (2006) new nano-thermal interface material for heat removal in electronics packaging. In: Proceedings of 1st IEEE electronics system integration technology conference (ESTC), Dresden, pp 1–6

    Google Scholar 

  203. Sun S, Xin L, Zanden C, Carlberg B, Ye L, Liu J (2012) Thermal performance characterization of nano thermal interface materials after power cycling. In: Proceedings of 62nd IEEE electronic component & technology conference (ECTC), San Diego, pp 1426–1430

    Google Scholar 

  204. Mo Z, Morjan R, Anderson J, Campbell EEB, Liu J (2005) Integrated nanotube microcooler for microelectronics applications. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 51–54

    Google Scholar 

  205. Ekstrand L, Mo Z, Zhang Y, Liu J (2005) Modelling of carbon nanotubes as heat sink fins in microchannels for microelectronics cooling. In: Proceedings of 5th international conference on polymers and adhesives in microelectronics and photonics, Wroclaw, pp 185–187

    Google Scholar 

  206. Fu Y, Nabiollahi N, Wang T, Wang S, Hu Z, Carlberg B, Zhang Y, Wang X, Liu J (2012) A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology 23:045304

    Article  CAS  Google Scholar 

  207. CiNTRA/XLIM-University of Limoges (2016)

    Google Scholar 

  208. Ali Z, Ghosh K, Poenar DP, Aditya S (2017) Lateral conduction within CNT-based planar microcoils on silicon substrate. In: Proceedings of 12th nanotechnology materials and devices conference (NMDC), Singapore

    Google Scholar 

  209. Wang S, Zhang Y, Hu Z, Liu J (2010) MDS study on the adhesive heat transfer in micro-channel cooler. In: Proceedings of 11th international conference on electronic packaging technology & high density packaging (ICEPT-HDP), Xi’an, pp 630–633

    Google Scholar 

  210. Zhang Y, Wang S, Fan J-Y, Liu J (2010) MDS investigation on the heat transfer properties of CNT micro-channel cooler. In: Proceedings of 3rd electronic system-integration technology conference (ESTC), Berlin. https://doi.org/10.1109/ESTC.2010.5642867

  211. Arjun KS, Rakesh K (2017) Nanotube fins on mini-channel walls and nanofluids for thermal enhancement. J Mech Eng R&D 40(2):317–327

    Google Scholar 

  212. Turgut A, Elbasan E (2014) Nanofluids for electronics cooling. In: Proceedings of 20th international symposium on design & technology in electronic packaging, (SIITME), Bucharest, pp 35–37

    Google Scholar 

  213. Jia W, Xiaojing W, Hongjun L, Zongshuo L (2010) Analysis of the motion between CNTs and water in CNTs micro channel cooler with molecular simulation. In: Proceedings of 11th international conference on electronic packaging technology & high density packaging (ICEPT-HDP), Xi’an, pp 23–26

    Google Scholar 

  214. Baek SS, Fearing RS (2008) Reducing contact resistance using compliant nickel nanowire arrays. IEEE Trans Components Packag Technol 31(4):859–868

    Article  CAS  Google Scholar 

  215. Kim YJ, Ma H, Yu Q (2010) Plasma nanocoated carbon nanotubes for heat transfer nanofluids. Nanotechnology 21:295703

    Article  CAS  Google Scholar 

  216. Liu Y, Zhang Y, Wang S, Liu J (2010) Numerical investigation on the thermal properties of the micro-cooler. In: Proceedings of 11th international conference on electronic packaging technology (EPTC), Singapore, pp 634–638

    Google Scholar 

  217. Zhang Y, Wang L, Fan J-Y, Liu J (2013) Experimental study on the mechanical Reliability of carbon nanotubes. In: Proceedings of 14th international conference on electronic packaging technology (EPTC), Singapore, pp 105–108

    Google Scholar 

  218. Li C, Pipe KP (2016) Thermionic refrigeration at CNT-CNT junctions. Appl Phys Lett 109:163901

    Article  CAS  Google Scholar 

  219. Hishinuma Y, Geballe TH, Moyzhes BY, Kenny TW (2001) Refrigeration by combined tunneling and thermionic emission in vacuum: use of nanometer scale design. Appl Phys Lett 78(17):2572–2574

    Article  CAS  Google Scholar 

  220. Chua HT, Wang X, Gordon JM (2004) Thermionic and tunneling cooling thermodynamics. Appl Phys Lett 84(20):3999–4001

    Article  CAS  Google Scholar 

  221. Wu L, Ang LK (2006) Low temperature refrigeration by electron emission in a crossed-field gap. Appl Phys Lett 89:133503

    Article  CAS  Google Scholar 

  222. Rutherglen C, Burke P (2009) Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. Small 5(8):884–906

    Article  CAS  Google Scholar 

  223. Zhu L, Xiu Y, Hess D, Wong CP (2006) In-situ opening aligned carbon nanotube films/arrays for multichannel ballistic transport in electrical interconnect. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 171–176

    Google Scholar 

  224. Xiao Z, Chai Y, Chan PCH, Chen B, Zhao M, Liu M (2009) Sacrificial removal of caps of aligned carbon nanotubes for interconnect application. In: Proceedings of 59th electronic components & technology conference (ECTC), San Diego, pp 1811–1815

    Google Scholar 

  225. Pike RT, Dellmo R, Wade J, Newland S, Hyland G, Newton CM (2004) Metallic fullerene and MWCNT composite solutions for microelectronics subsystem electrical interconnection enhancement. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 461–465

    Google Scholar 

  226. Ding J, Rea S, Linton D, Orr E, MacConnell J (2006) Mixture properties of carbon fibre composite materials for electronics shielding in systems packaging. In: Proceedings of 1st IEEE electronics systemintegration technology conference (ESTC), Dresden, pp 19–25

    Google Scholar 

  227. Chiu J-C, Chang C-M, Cheng W-H, Jou W-S (2006) High-performance electromagnetic susceptibility for a 2.5Gb/s plastic transceiver module using multi-wall carbon nanotubes. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 183–186

    Google Scholar 

  228. Chang C-M, Chiu J-C, Yeh C-Y, Jou W-S, Lan Y-F, Fang Y-W, Lin J-J, Cheng W-H (2007) Electromagnetic shielding performance for a 2.5Gb/s plastic transceiver module using dispersive multiwall carbon nanotubes. In: Proceedings of 57th IEEE electronic component & technology conference (ECTC), Reno, pp 442–446

    Google Scholar 

  229. Rousseaux D, Lhost O, Lodefier P (2013) Industrial advanced carbon nanotubes-based materials for electrostatic discharge packaging. In: Proceedings of 14th international conference on electronic packaging technology (EPTC), Singapore, pp 386–388

    Google Scholar 

  230. Li J, Lumpp JK (2006) Electrical and mechanical characterization of carbon nanotube filled conductive adhesive. In: Proceedings of IEEE aerospace conference. https://doi.org/10.1109/AERO.2006.1655965

  231. Xuechun L, Feng L (2004) The improvement on the properties of silver-containing conductive adhesives by the addition of Carbon Nanotube. In: Proceedings of 6th IEEE CPMT conference on high density microsystem design and packaging and component failure analysis (HDP’04), Shanghai, pp 382–384

    Google Scholar 

  232. Bondar AM, Bara A, Patroi D, Svasta PM (2005) Carbon mesophase/carbon nanotubes nanocomposite – functional filler for conductive pastes. In: Proceedings of 5th international conference on polymers and adhesives in microelectronics and photonics, Wroclaw, pp 215–218

    Google Scholar 

  233. Bara A, Bondar AM, Svasta PM (2006) Polymer/CNTs composites for electronics packaging. In: Proceedings of 1st IEEE electronics systemintegration technology conference (ESTC), Dresden, pp 334–336

    Google Scholar 

  234. Lin R-J, Hsu Y-Y, Chen Y-C, Cheng S-Y, Uang R-H (2005) Fabrication of nanowire anisotropic conductive film for ultra-fine pitch flip chip interconnection. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 66–70

    Google Scholar 

  235. Fiedler S, Zwanzig M, Schmidt R, Auerswald E, Klein M, Scheel W, Reichl H (2006) Evaluation of metallic nano-lawn structures for application in microelectronics packaging. In: Proceedings of 1st IEEE electronics systemintegration technology conference (ESTC), Dresden, pp 886–891

    Google Scholar 

  236. Wu HP, Liu JF, Wu XJ, Ge MY, Wang YW, Zhang GQ, Jiang JZ (2006) High conductivity of isotropic conductive adhesives filled with silver nanowires. Int J Adhes Adhes 26:617–621

    Article  CAS  Google Scholar 

  237. Wu H, Wu X, Liu J, Zhang G, Wang Y, Zeng Y, Jing J (2006) Development of a novel isotropic conductive adhesive filled with silver nanowires. J Compos Mater 40(21):1961–1969

    Article  CAS  Google Scholar 

  238. Naeemi A, Huang G, Meindl J (2007) Performance modeling for carbon nanotube interconnects in on-chip power distribution. In: Proceedings of 57th IEEE electronic component & technology conference (ECTC), Reno, pp 420–428

    Google Scholar 

  239. Chai Y, Gong J, Zhang K, Chan PCH, Yuen MMF (2007) Low temperature transfer of aligned carbon nanotube films using liftoff technique. In: Proceedings of 57th IEEE electronic component & technology conference (ECTC), Reno, pp 429–434

    Google Scholar 

  240. Wu C-J, Chou C-Y, Han C-N, Chiang K-N (2007) Simulation and validation of CNT mechanical properties – the future interconnection method. In: Proceedings of 57th IEEE electronic component & technology conference (ECTC), Reno, pp 447–452

    Google Scholar 

  241. Ruiz A, Vega E, Katiyar R, Valentin R (2007) Novel enabling wire bonding technology. In: Proceedings of 57th IEEE electronic component & technology conference (ECTC), Reno, pp 458–462

    Google Scholar 

  242. Riley GA (2007) Nanobump flip chips. Adv Packag :18–20

    Google Scholar 

  243. Liu J, Wang T, Liu J (2010) Use of carbon nanotubes in potential electronics packaging applications. In: Proceedings of 10th IEEE international conference on nanotechnology (IEEE-NANO), Seoul, pp 160–166

    Google Scholar 

  244. Fan X, Li X, Mu W, Jiang D, Huang S, Fu Y, Zhang Y, Liu J (2014) Reliability of carbon nanotube bumps for chip on glass application. In: Proceedings of electronics system-integration conference (ESTC), Helsinki. https://doi.org/10.1109/ESTC.2014.6962753

  245. Franck P, Baillargeat D, Tay BK (2012) Mesoscopic model for the electromagnetic properties of arrays of nanotubes and nanowires: a bulk equivalent approach. IEEE Trans Nanotechnol 11:964

    Article  Google Scholar 

  246. Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single-and Multi-Wall carbon nanotube interconnects. IEEE Electron Device Lett 28(2):135–138

    Article  CAS  Google Scholar 

  247. Chaudhry A (2013) Interconnects for nanoscale MOSFET technology: a review. J Semicond 34(6):066001

    Article  CAS  Google Scholar 

  248. Naeemi A, Sarvari R, Meindl JD (2005) Performance comparison between carbon nanotube and copper interconnects for Gigascale integration (GSI). IEEE Electron Device Lett 26(2):84–86

    Article  CAS  Google Scholar 

  249. Li H, Yin W-Y, Mao J-F (2006) Modeling of carbon nanotube interconnects and comparative analysis with Cu interconnects. In: Proceedings of Asia-Pacific microwave conference (APMC), Yokohama. https://doi.org/10.1109/APMC.2006.4429659

  250. Banerjee K, Li H, Srivastava N (2008) Current status and future perspectives of carbon nanotube interconnects. In: Proceedings of 8th IEEE conference on nanotechnology (IEEE-NANO), Arlington, pp 432–436

    Google Scholar 

  251. D’Amore M, Sarto MS, D’Aloia AG (2010) Skin-effect modeling of carbon nanotube bundles: the high frequency effective impedance. In: Proceedings of IEEE international symposium on electromagnetic compatibility (EMC), Fort Lauderdale, pp 847–852

    Google Scholar 

  252. Mahanta PK, Adhikari P, Rocky KA (n.d.) Skin effect analysis for carbon nano material based interconnects at high frequency. In: Proceedings of 2013 international conference on informatics, electronics & vision (ICIEV), Dhaka. https://doi.org/10.1109/ICIEV.2013.6572717

  253. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans Electron Devices 56(9):1799–1821

    Article  CAS  Google Scholar 

  254. Li H, Banerjee K (2009) High-frequency analysis of carbon nanot..ube interconnects and implications for on-chip inductor design. IEEE Trans Electron Devices 56(10):2202–2214

    Article  CAS  Google Scholar 

  255. Jackson RR, Graham S (2009) Specific contact resistance at metal/carbon nanotube interfaces. Appl Phys Lett 94:012109

    Article  CAS  Google Scholar 

  256. Patrick W, Anshul V, Jason T, Yang C (2013) Electrical and structural analysis of CNT-metal contacts in via interconnects. In: Proceedings of 7th international conference on quantum, nano and micro technologies

    Google Scholar 

  257. Svensson J, Campbell E (2011) Schottky barriers in carbon nanotube-metal contacts. J Appl Phys 110. https://doi.org/10.1063/1.3664139

    Article  CAS  Google Scholar 

  258. Chai Y, Hazeghi A, Takei K, Chen H, Chan P, Javey A, Wong H (2010) Graphitic interfacial layer to carbon nanotube for low electrical contact resistance. IEEE International Electron Devices Meeting (IEDM), San Francisco, pp 9.2.1–9.2.4

    Google Scholar 

  259. Dong L, Youkey S, Bush J, Jiao J, Dubin V, Chebiam R (2007) Effects of local joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. J Appl Phys 101(2):024320

    Article  CAS  Google Scholar 

  260. Coiffic JC, Fayolle M, Maitrejean S, Foa Torres LEF, Le Poche H (2007) Conduction regime in innovative carbon nanotube via interconnect architectures. Appl Phys Lett 91:252107

    Article  CAS  Google Scholar 

  261. Awano Y, Sato S, Kondo D, Ohfuti M, Kawabata A, Nihei M, Yokoyama N (2006) Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys Stat Sol A 203(14):3611–3616

    Article  CAS  Google Scholar 

  262. Vollebregt S, Chiaramonti AN, Ishihara R, Schellevis H, Beenakker K (2012) Contact resistance of low-temperature carbon nanotube vertical interconnects. In: Proceedings of 12th IEEE conference on nanotechnology (IEEE-NANO), Birmingham. https://doi.org/10.1109/NANO.2012.6321985

  263. Lee S-E, Moon K-S, Sohn Y (2016) Temperature dependence of contact resistance at metal/MWNT interface. Appl Phys Lett 109:021605

    Article  CAS  Google Scholar 

  264. Chen MX, Song XH, Gan ZY, Liu S (2011) Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate. Nanotechnology 22:345704

    Article  CAS  Google Scholar 

  265. Shi Q, Yu N, Huang Q, Fukuda T, Nakajima M, Yang Z (2015) Contact characterization between multi-walled carbon nanotubes and metal electrodes. In: Proceedings of 15th IEEE conference on nanotechnology (IEEE-NANO), Rome, pp 1386–1389

    Google Scholar 

  266. Song X, Chen M, Gan Z (2013) Atomistic study of welding of carbon nanotube onto metallic substrate. In: Proceedings of 63rd IEEE electronic component technology conference (ECTC), Las Vegas, pp 2259–2263

    Google Scholar 

  267. Vollenbregt S, Ishihara R, Derakhshandeh J, van der Cingerl J, Schellevis H, Beenakker CIM (2011) Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology. In: Proceedings of 11th IEEE international conference on nanotechnology (IEEE-NANO), Portland, pp 985–990

    Google Scholar 

  268. Stano KL, Chapla R, Carroll M, Nowak J, McCord M, Bradford PD (2013) Copper-encapsulated vertically aligned carbon nanotube arrays. ACS Appl Mater Interfaces 5:10774–10781

    Article  CAS  Google Scholar 

  269. Ting J-H, Chiu C-C, Huang F-Y (2009) Carbon nanotube array vias for interconnect applications. J Vac Sci Technol B 27(3):1086–1092

    Article  CAS  Google Scholar 

  270. Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel R, Unger E (2003) Carbon nanotubes for microelectronics: status and future prospects. Mater Sci Eng C 23:663–669

    Article  CAS  Google Scholar 

  271. Nihei M, Horibe M, Kawabata A, Awano Y (2004) Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects. Jpn J Appl Phys 43:1856–1859

    Article  CAS  Google Scholar 

  272. Yokoyama D, Iwasaki T, Yoshida T, Kawarada H, Sato S, Hyakushima T, Nihei M, Awano Y (2007) Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing. Appl Phys Lett 91:263101

    Article  CAS  Google Scholar 

  273. Xu T, Wang Z, Miao J, Chen X, Tan CM (2007) Aligned carbon nanotubes for through-wafer interconnects. Appl Phys Lett 91:042108

    Article  CAS  Google Scholar 

  274. Nihei M, Horibe M, Kawabata A, Awano Y (2004) Carbon nanotube vias for future LSI interconnects. In: Proceedings of IEEE international interconnect conference, pp 251–253

    Google Scholar 

  275. Sato S, Nihei M, Mimura A, Kawabata A, Kondo D, Shioya H, Iwai T, Mishima M, Ohfuti M, Awano Y (2006) Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles. In: Proceedings of IEEE international interconnect conference, pp 230–232

    Google Scholar 

  276. Nihei M, Hyakushima T, Sato S, Nozue T, Norimatsu M, Mishima M, Murakami T, Kondo D, Kawabata A, Ohfuti M, Awano Y (2007) Electrical properties of carbon nanotube via interconnects fabricated by novel damascene process. In: Proceedings of IEEE international interconnect conference, pp 204–206

    Google Scholar 

  277. Wang T, Jeppson K, Olofsson N, Campbell EEB, Liu J (2009) Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology 20:485203

    Article  CAS  Google Scholar 

  278. Wang T, Jeppson K, Ye L, Liu J (2011) Carbon-nanotube through-silicon via interconnects for three-dimensional integration. Small 7(16):2313–2317

    Article  CAS  Google Scholar 

  279. Xie R, Zhang C, van der Veen MH, Arstila K, Hantschel T, Chen B, Zhong G, Robertson J (2013) Carbon nanotube growth for through silicon via application. Nanotechnology 24:125603

    Article  CAS  Google Scholar 

  280. Ghosh K, Yap CC, Tay BK, Tan CS (2013) Integration of CNT in TSV (≤5 μm) for 3D IC application and its process challenges. In: Proceedings of IEEE international 3D systems integration conference (3DIC), San Francisco. https://doi.org/10.1109/3DIC.2013.6702369

  281. Graham AP, Duesberg GS, Seidel R, Liebau M, Unger E, Kreupl F, Hoenlein W (2004) Towards the integration of carbon nanotubes in microelectronics. Diamond Relat Mater 13:1296–1300

    Article  CAS  Google Scholar 

  282. Soga I, Kondo D, Yamaguchi Y, Iwai T, Mizukoshi M, Awano Y, Yube K, Fujii T (2008) Carbon nanotube bumps for LSI interconnect. In: Proceedings of 58th electronic components & technology conference (ECTC), Lake Buena Vista, pp 1390–1394

    Google Scholar 

  283. Jiang D, Wang T, Ye L, Jeppson K, Liu J (2012) Carbon nanotubes in electronics interconnect applications with a focus on 3D-TSV technology. ECS Trans 44(1):683–692

    Article  CAS  Google Scholar 

  284. Jiang D, Ye L, Jeppson K, Liu J (2012) Electrical interconnects made of carbon nanotubes: applications in 3D chip stacking. In: Proceedings of IMAPS nordic annual conference, Helsingor, pp 150–159

    Google Scholar 

  285. Mu W, Hansson J, Sun S, Edwards M, Fu Y, Jeppson K, Liu J (2016) Double-densified vertically aligned carbon nanotube bundles for applications and integration in 3D high aspect ratio TSV interconnects. In: Proceedings of 66th electronic components & technology conference (ECTC), Las Vegas, pp 211–216

    Google Scholar 

  286. Gupta A, Kannan S, Kim BC, Mohammed F, Ahn B (2010) Development of novel carbon nanotube TSV technology. In: Proceedings of 60th electronic components and technology conference (ECTC), Las Vegas, pp 1699–1702

    Google Scholar 

  287. Tan CW, Miao J (2007) Transmission line characteristics of a CNT-based vertical interconnect scheme. In: Proceedings of 57th electronic components & technology conference (ECTC), Reno, pp 1936–1941

    Google Scholar 

  288. Tan CW, Miao J (2007) Transmission line characteristics of a CNT-based vertical interconnect scheme. In: Proceedings of 57th electronic components & technology conference (ECTC), Reno, pp 1936–1941

    Google Scholar 

  289. Xu C, Li H, Suaya R, Banerjee K (2009) Compact AC modeling and analysis of Cu, W, and CNT based through-silicon vias (TSVs) in 3-D ICs. In: Proceedings of IEEE international electron devices meeting, (IEDM) Baltimore, pp 21.6.1–21.6.4

    Google Scholar 

  290. Alam A, Majumder MK, Kumari A, Kumar VR, Kaushik BK (2015) Performance analysis of single- and multi-walled carbon nanotube based through silicon vias. In: Proceedings of 65th electronic components and technology conference (ECTC), San Diego, pp 1834–1839

    Google Scholar 

  291. Gupta A, Kim BC, Kannan S, Evana SS, Li L (2011) Analysis of CNT based 3D TSV for emerging RF applications. In: Proceedings of 61st electronic components and technology conference (ECTC), Lake Buena Vista, pp 2056–2059

    Google Scholar 

  292. Kannan S, Gupta A, Kim BC, Mohammed F, Ahn B (2010) Analysis of carbon nanotube based through silicon vias. In: Proceedings of 60th electronic components and technology conference (ECTC), Las Vegas, pp 51–57

    Google Scholar 

  293. Qian L, Zhu Z, Xia Y (2014) Study on transmission characteristics of carbon nanotube through silicon via interconnect. IEEE Microw Wirel Components Lett 24(12):830–832

    Article  Google Scholar 

  294. Sinha A, Mihailovic JA, Morris JE, Lu H, Bailey C (2010) Modeling thermal conductivity and CTE for CNT-Cu composites for 3-D TSV application. In: Proceedings of IEEE nano-materials & devices conference (NMDC), Monterey, pp 262–266

    Google Scholar 

  295. Zhu Y, Ghosh K, Li HY, Lin Y, Tan CS, Xia G (2016) On the origins of near-surface stresses in silicon around Cu-filled and CNT-filled through silicon vias. Semicond Sci Technol 31:055008

    Article  CAS  Google Scholar 

  296. Feng Y, Burkett SL (2015) Fabrication and electrical performance of through silicon via interconnects filled with a copper/carbon nanotube composite, J Vac Sci Technol B 33(2). https://doi.org/10.1116/1.4907417

    Article  CAS  Google Scholar 

  297. Sun S, Mu W, Edwards M, Mencarelli D, Pierantoni L, Fu Y, Jeppson K, Liu J (2016) Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Nanotechnology 27:335705

    Article  CAS  Google Scholar 

  298. Feng Y, Burkett SL (2015) Modeling a copper/carbon nanotube composite for applications in electronic packaging. Comput Mater Sci 97:1–5

    Article  CAS  Google Scholar 

  299. Subramanian C, Yamada T, Kobashi K, Sekiguchi A, Futada DN, Yumura M, Hata K (2013) One hundredfold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Commun 4:2202

    Article  CAS  Google Scholar 

  300. Awad I, Ladani L (2015) Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach. Nanotechnology 26:485705

    Article  CAS  Google Scholar 

  301. Rao M (2017) Vertical delay modeing of copper/carbon nanotube composites in a tapered through silicon via. In: Proceedings of 67th electronic components and technology conference (ECTC), Orlando, pp 80–85

    Google Scholar 

  302. Nieuwoudt A, Mondal M, Massoud Y (2007) Predicting the performance and reliability of carbon nanotube bundles for on-chip interconnect. In: Proceedings of IEEE Asia and South Pacific design automation conference, (ASP-DAC ‘07). Yokohama, pp 708–713

    Google Scholar 

  303. Maffucci A, Miano G, Villone F (2008) Electromagnetic and circuital modeling of carbon nanotube interconnects. In: Proceedings of 2nd electronics system-integration technology conference (ESTC), Greenwich, pp 1051–1056

    Google Scholar 

  304. Maffucci A, Miano G, Villone F (2009) A new circuit model for carbon nanotube interconnects with diameter-dependent parameters. IEEE Trans Nanotechnol 8(3):345–354

    Article  Google Scholar 

  305. Sarto MS, Tamburrano A, D’Amore M (2009) New electron-waveguide-based modeling for carbon nanotube interconnects. IEEE Trans Nanotechnol 8(2):214–225

    Article  Google Scholar 

  306. Srivastava N, Joshi RV, Banerjee K (2005) Carbon nanotube interconnects: implications for performance, power dissipation and thermal management. Proc IEEE Int Electron Devices Meet IEDM Tech Dig. https://doi.org/10.1109/IEDM.2005.1609320

  307. Srivastava N, Banerjee K (2005) Proceedings of ICCAD Conference, pp 383–390

    Google Scholar 

  308. Bannerjee K, Srivastava N (2006) Are carbon nanotubes the future of VLSI interconnections? In: Proceedings of 43rd design automation conference, San Francisco, pp 809–814

    Google Scholar 

  309. Zhang X, Wang T, Liu J, Andersson C (2008) Overview of carbon nanotubes as off-chip interconnects. In: Proceedings of 2nd electronics system integration technology conference (ESTC), Greenwich, pp 633–638

    Google Scholar 

  310. Chiariello AG, Miano G, Maffucci A (2009) Carbon nanotube bundles as nanoscale chip to package interconnects. In: Proceedings of 9th IEEE conference on nanotechnology (IEEE-NANO), Genoa, pp 70–73

    Google Scholar 

  311. Desmaris V, Saleem MA, Shafiee S (2015) Examining carbon nanofibers: properties, growth, and applications. IEEE Nanotechnol Mag 9(2):33–38

    Article  Google Scholar 

  312. Chen C, Wang L, Li R, Jiang G, Yu H, Chen T (2007) Effect of silver nanowires on electrical conductance of system composed of silver particles. J Mater Sci 42:3172–3176

    Article  CAS  Google Scholar 

  313. Chen D, Qiao X, Qiu X, Tan F, Chen J, Jiang R (2010) Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. J Mate Sci: Mater Electron 21(5):486–490

    CAS  Google Scholar 

  314. Munari A, Xu J, Dalton E, Mathewson A, Razeeb KM (2009) Metal nanowire-polymer nanocomposite as thermal interface material. In: Proceedings of 59th electronic components & technology conference (ECTC), San Diego, pp 448–452

    Google Scholar 

  315. Stam F, Razeeb KM, Salwa S, Mathewson A (2009) Micro-nano interconnect between gold bond pads and copper nano-wires embedded in a polymer template. In: Proceedings of 59th electronic components & technology conference (ECTC), San Diego, pp 1470–1474

    Google Scholar 

  316. Ye H, Huang S, Yuan Z, Lu X, Jeppson K, Ye L, Liu J (2016) Preventing aging of electrically conductive adhesives on metal substrate using graphene based barrier. In: Proceedings of CSTIC/IEEE APM joint conference, March 13–14, Shanghai

    Google Scholar 

  317. Andriotis AN, Richter E, Menon M (2016) Prediction of a new graphene-like Si2BN solid. Phys Rev B 93:081413(R). https://doi.org/10.1103/PhysRevB.93.081413

    Article  CAS  Google Scholar 

  318. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  CAS  Google Scholar 

  319. Wu S, Li J, Zhang G, Yao Y, Li G, Sun R, Wong C (2017) Ultrafast self-healing nanocomposites via infrared laser and their application in flexible electronics. ACS Appl Mater Interfaces 9(3):3040–3049

    Article  CAS  Google Scholar 

  320. Balandin AA (2011) Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Nat Mater 10:569–581

    Article  CAS  Google Scholar 

  321. Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11:203–207

    Article  CAS  Google Scholar 

  322. Wejrzanowskia T, Grybczuka M, Chmielewskib M, Pietrzakb K, Kurzydlowskia KJ, Strojny-Nedza A (2016) Thermal conductivity of metal-graphene composites. Mater Des 99:163–173

    Article  CAS  Google Scholar 

  323. Chen G, Wu F, Liu C, Silberschmidt VV, Chan YC (2016) Microstructures and properties of new SneAgeCu lead-free solder reinforced with Ni-coated graphene nanosheets. J Alloys Compd 656:500–509

    Article  CAS  Google Scholar 

  324. Casa M, Huang S, Ciambelli P, Wang N, Ye L, Liu J (2014) Development and characterization of graphene enhanced thermal conductive adhesives. In: Proceedings of 15th international conference on electronic packaging technology (ICEPT), Chengdu, pp 480–483

    Google Scholar 

  325. Wang N, Logothetis N, Wei M, Huang S, Ye L, Liu J (2016) Development and characterization of graphene enhanced thermal conductive adhesives. In: Proceedings of 6th electronic system-integration technology conference (ESTC), Grenoble. https://doi.org/10.1109/ESTC.2016.7764682

  326. Loeblein M, Tsang SH, Han Y, Zhang X, Teo EHT (2016) Heat dissipation enhancement of 2.5D package with 3D graphene and 3D boron nitride networks as Thermal Interface Material (TIM). In: Proceedings of 66th IEEE electronic components and technology conference (ECTC), Las Vegas, pp 707–713

    Google Scholar 

  327. Rho H, Lee S, Bae S, Kim T-W, Lee DS, Lee HJ, Hwang JY, Jeong T, Kim S, Ha J-S, Lee SH (2015) Three-dimensional porous copper-graphene heterostructures with durability and high heat dissipation performance. Scientific Reports 5, Article number: 12710. https://doi.org/10.1038/srep12710

  328. Rho H, Jang YS, Kim S, Bae S, Kim T-W, Lee DS, Ha J-S, Lee SH (2017) Porous copper–graphene heterostructures for cooling of electronic devices. Nanoscale 9:7565–7569

    Article  CAS  Google Scholar 

  329. Zhang Y, Zhang P, Wang N, Fu Y, Liu J (2014) Use of graphene-based films for hot spot cooling. In: Proceedings of electronics system-integration technology conference (ESTC), Helsinki. https://doi.org/10.1109/ESTC.2014.6962834

  330. Zhang Y, Edwards M, Samani MK, Logothetis N, Ye L, Yifeng F, Jeppson K, Liu J (2016) Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon 106:195–201

    Article  CAS  Google Scholar 

  331. Zhang Y, Han H, Wang N, Zhang P, Yifeng F, Murugesan M, Edwards M, Jeppson K, Volz S, Liu J (2015) Improved heat spreading performance of functionalized graphene in microelectronic device application. Adv Funct Mater 25(28):4430–4435

    Article  CAS  Google Scholar 

  332. Han H, Zhang Y, Wang N, Samani MK, Ni Y, Mijbi ZY, Edwards M, Xiong S, Sääskilahti K, Murugesan M, Fu Y, Ye L, Sadeghi H, Bailey S, Kosevich YA, Lambert CJ, Liu J, Volzc S (2016) Functionalization mediates heat transport in graphene nanoflakes. Nat Commun 7:11281. https://doi.org/10.1038/ncomms11281

    Article  CAS  Google Scholar 

  333. Zhang Y, Huang S, Wang N, Bao J, Sun S, Edwards M, Fu X, Yue W, Lu X, Zhang Y, Yuan Z, Han H, Volz S, Fu Y, Ye L, Jeppson K, Liu J (2016) 2D heat dissipation materials for microelectronics cooling applications. In: Proceedings of semiconductor technology international conference (CSTIC), Shanghai. https://doi.org/10.1109/CSTIC.2016.7463960

  334. Kageshima H, Hibino H, Nagase M, Sekine Y, Yamaguchi H (2011) Theoretical study on magnetoelectric and thermoelectric properties for graphene devices. Jpn J Appl Phys 50(7R):070115

    Article  Google Scholar 

  335. Duan J, Wang X, Lai X, Li G, Watanabe K, Taniguchi T, Zebarjadi M, Andrei EY (2016) High thermoelectricpower factor in graphene/hBN devices. PNAS 113(50):14272–14276

    Article  CAS  Google Scholar 

  336. Xu C, Li H, Banerjee K (2008) Graphene Nano-Ribbon (GNR) interconnects: a genuine contender or a delusive dream? IEEE Int Electron Devices Meeting, (IEDM), San Francisco. https://doi.org/10.1109/IEDM.2008.4796651

  337. Xu C, Li H, Banerjee K (2009) Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans Electron Devices 56(8):1567–1578

    Article  CAS  Google Scholar 

  338. Liu W, Kang J, Banerjee K (2016) Characterization of FeCl3 intercalation doped CVD few-layer graphene. IEEE Electron Device Lett 37(9):1246–1249

    Article  CAS  Google Scholar 

  339. Jiang J, Kang J, Cao W, Xie X, Zhang H, Chu JH, Liu W, Banerjee K (2017) Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett 17(3):1482–1488

    Article  CAS  Google Scholar 

  340. Wang D-W, Zhang R, Yin W-Y, Zhao W-S, Wang G (2015) Modeling and characterization of Cu-graphene heterogeneous interconnects. In: Proceedings of 15th IEEE international conference on nanotechnology (IEEE-NANO), Rome, pp 499–502

    Google Scholar 

  341. Li N, Mao J, Zhao W-S, Tang M, Chen W, Yin W-Y (2016) Electrothermal cosimulation of 3-D carbon-based heterogeneous interconnects. IEEE Trans Compon Packag Manuf Technol 6(4):518–526

    Article  CAS  Google Scholar 

  342. Al Shboul A, Trudeau C, Cloutier S, Siaj M, Claverie JP (2017) Graphene dispersions in alkanes: toward fast drying conducting inks. Nanoscale 9:9893–9901

    Article  Google Scholar 

  343. Tsai L-N, Shen G-R, Cheng Y-T, Hsu W (2004) Power and reliability improvement of an electro-thermal microactuator using ni-diamond nanocomposite. In: Proceedings of 54th IEEE electronic component & technology conference ECTC), Las Vegas, pp 472–476

    Google Scholar 

  344. Klein KM, Zheng J, Gewirtz A, Sarma DS, Rajalakshmi S, Sitaraman SK (2005) Array of nano-cantilevers as a bio-assay for cancer diagnosis. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 583–587

    Google Scholar 

  345. Lee B, Pamidigantham R, Premachandran CS (2006) Development of polymer waveguide using nano-imprint method for chip to chip optical communication and study the suitability on organic substrates. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego

    Google Scholar 

  346. Dixit P, Miao J (2006) Fabrication of high aspect ratio 35 micron pitch nano-interconnects for next generation 3-D wafer level packaging by through-wafer copper electroplating. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 388–393

    Google Scholar 

  347. Spiesshoefer S, Schaper L, Burkett S, Vangara G, Rahman Z, Arunasalam P (2004) Z-axis interconnects using fine pitch, nanoscale through-silicon vias: process development. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 466–471

    Google Scholar 

  348. Aggarwal AO, Makondeya Raj P, Sundaram V, Ravi D, Koh S, Tummala RR (2005) 50 micron pitch wafer level packaging testbed with reworkable IC-package nano interconnects. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 1139–1146

    Google Scholar 

  349. Bansal S, Saxena A, Tummala RR (2004) Nanocrystalline copper and nickel as ultra high-density chip-to-package interconnections. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 1647–1651

    Google Scholar 

  350. Aggarwal AO, Naeli K, Makondeya Raj P, Ayazi F, Bhattacharya S, Tummala RR (2004) MEMS composite structures for tunable capacitors and IC-package nano interconnects. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 835–842

    Google Scholar 

  351. Aggarwal AO, Markondeya Raj P, Abothu IR, Sacks MD, Tay AAO, Tummala RR (2004) New paradigm in IC-package interconnections by reworkable nano-interconnects. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 451–460

    Google Scholar 

  352. Doraiswami R, Muthuswamy M (2006) Nano bio embedded fluidic substrates: system level integration using nano electrodes for food safety. In: Proceedings of 56th IEEE electronic component & technology conference ECTC), San Diego, pp 158–160

    Google Scholar 

  353. Doraiswami R (2006) Embedded nano nickel interconnects and electrodes for next generation 15 micron pitch embedded bio fluidic sensors in FR4 substrates. In: Proceedings of 56th IEEE electronic component & technology conference (ECTC), San Diego, pp 1323–1325

    Google Scholar 

  354. Brun C, Carmignani C, Tidiane-Diagne C, Torrengo S, Elchinger P-H, Reynaud P, Thuaire A, Cheramy S, Gasparutto D, Tiron R, Filoramo A, Baillin X (2016) First integration steps of Cu-based DNA nanowires for interconnections. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT): January 2016, vol 2016, No. DPC, pp 000650–000679

    Article  Google Scholar 

  355. Brun C, Tidiane C, Diagne, Elchinger P-H, Torrengo S, Thuaire A, Gasparutto D, Tiron R, Bailin X (2017) Deoxyribonucleic acid for nanopackaging: a promising bottom-up approach. IEEE Nanotechnol Mag 11(1):12–19

    Google Scholar 

  356. Fang S-P, Hwangbo S, An H, Yoon Y-K YK (2017) Fabrication and characterization of nanoporous metallic interconnects using electrospun nanofiber template and electrochemical deposition. In: Proceedings of 67th IEEE electronic components and technology conference (ECTC), Orlando, pp 1578–1583

    Google Scholar 

  357. Fedyanin DY, Yakubovsky DI, Kirtaev RV, Volkov VS (2016) Ultralow-loss CMOS copper plasmonic waveguides. Nano Lett 16(1):362–366

    Article  CAS  Google Scholar 

  358. Krasavin AV, Zayats AV (2015) Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv Opt Mater 3(12):1662–1690

    Article  CAS  Google Scholar 

  359. Krasavin AV, Zayats AV (2016) Benchmarking system-level performance of passive and active plasmonic components: integrated circuit approach. Proc IEEE 104(12):2338–2348

    Article  CAS  Google Scholar 

  360. Kulkarni SK (2015) Section 8.4.2. Surface plasmon polariton, In: Nanotechnology: principles and practices, Springer

    Google Scholar 

  361. Svintsov DA, Arsenin AV, Fedyanin DY (2015) Full loss compensation in hybrid plasmonic waveguides under electrical pumping. Opt Express 23(15):19358–19375

    Article  CAS  Google Scholar 

  362. Gauvin M, Alnasser T, Terver E, Abid I, Mlayah A, Xie S, Brugger J, Viallet B, Ressier L, Grisolia J (2016) Plasmonic photo-current in freestanding monolayered gold nanoparticle membranes. Nanoscale 8:16162–16167

    Article  CAS  Google Scholar 

  363. Bakhoum EG, Van Landingham KM (2015) Novel technique for precision soldering based on laser-activated gold nanoparticles. IEEE Trans Components Packag Manuf Technol 5(6):852–858

    Article  CAS  Google Scholar 

  364. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8:13131–13154

    Article  CAS  Google Scholar 

  365. Jannathul Firdhouse M, Lalitha P (2015) Biosynthesis of silver nanoparticles and its applications. J Nanotechnol. https://doi.org/10.1155/2015/829526

    Article  CAS  Google Scholar 

  366. Desmulliez MPY, Watson DE, Marques-Hueso J, Ng JH-G A bio-inspired photopatterning method to deposit silver nanoparticles onto non conductive surfaces using spinach leaves extract in ethanol. In: Proceedings of conference on biomimetic and biohybrid systems, in living machines 2016: Biomimetic and Biohybrid Systems, pp 71–78

    Google Scholar 

  367. Turki BM, Parker ETA, Wünscher S, Schubert US, Saunders R, Sanchez-Romaguera V, Ziai MA, Yeates SG, Batchelor JC (2016) Significant factors in the inkjet manufacture of frequency-selective surfaces. IEEE Trans Components Packag Manuf Technol 6(6):933–940

    Article  CAS  Google Scholar 

  368. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183. https://doi.org/10.1021/es103316q

    Article  CAS  Google Scholar 

  369. Costanza J, El Badawy AM, Tolaymat TM (2011) Comment on 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:7591–7592. https://doi.org/10.1021/es200666n

    Article  CAS  Google Scholar 

  370. Silver nanotechnologies and the environment: old problems or new challenges S.N. Luoma, Project on Emerging Nanotechnologies PEN 15, Sept 2008, (PEW Charitable Trusts & Woodrow Wilson International Center for Scholars)

    Google Scholar 

  371. Massarsky A, Trudeau VL, Moon TW (2014) Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol 38(3):861–873

    Article  CAS  Google Scholar 

  372. Exbrayat J-M, Moudilou EN, Lapied E (2015) Harmful effects of nanoparticles on animals. J Nanotechnol 2015. doi.org/10.1155/2015/861092

  373. Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481

    Article  CAS  Google Scholar 

  374. Height MJ Evaluation of hazard and exposure associated with nanosilver and other nanometal oxide pesticide products. FIFRA Scientific Advisory Panel (SAP) Open Consultation Meeting November 3–6, 2009 Arlington

    Google Scholar 

  375. Hong J, Zhang Y-Q (2016) Murine liver damage caused by exposure to nano-titanium dioxide. Nanotechnology 27(11):112001

    Article  CAS  Google Scholar 

  376. Felix LC, Ede JD, Snell DA, Oliveira TM, Martinez-Rubi Y, Simard B, Luong JHT, Gossad GG (2016) Physicochemical properties of functionalized carbon-based nanomaterials and their toxicity to fishes. Carbon 104:78–89

    Article  CAS  Google Scholar 

  377. Sharma M, Nikota J, Halappanavar S, Castranova V, Rothen-Rutishauser B, Clippinger AJ (2016) Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Arch Toxicol 90(7):1605–1622

    Article  CAS  Google Scholar 

  378. Krow CM (2012) Nanotechnology and asbestos: informing industry about carbon nanotubes, nanoscale titanium dioxide, and nanosilver. IEEE Nanotechnol Mag 6(4):6–13

    Article  Google Scholar 

  379. Zhang GQ, Graef M, Van Roosmalen F (2006) The rationale and paradigm of “More than Moore”. In: Proceedings of 56th IEEE electronic component & technology conference ECTC), San Diego, pp 151–157

    Google Scholar 

  380. Malshe AP (2004) Development of a curriculum in nano and MEMS packaging and manufacturing for integrated systems to prepare next generation workforce. In: Proceedings of 54th IEEE electronic component & technology conference (ECTC), Las Vegas, pp 1706–1711

    Google Scholar 

  381. Zerna T, Wolter K-J (2005) Developing a course about nano-packaging. In: Proceedings of 55th IEEE electronic component & technology conference (ECTC), Orlando, pp 1925–1929

    Google Scholar 

  382. Morris JE (2007) Nanodot systems reliability issues. In: Proceedings of international symposium on high density packaging and microsystem integration, HDP ‘07, Shanghai. https://doi.org/10.1109/HDP.2007.4283555

  383. Morris JE (2010) Nanopackaging. In: Iniewski K (ed) Nanoelectronics: fabrication, interconnects, and device structures, McGraw-Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morris, J.E. (2018). Nanopackaging: Nanotechnologies and Electronics Packaging. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_1

Download citation

Publish with us

Policies and ethics