Advertisement

Ecology for Sustainable and Multifunctional Agriculture

  • Sabrina Gaba
  • Audrey Alignier
  • Stéphanie Aviron
  • Sébastien Barot
  • Manuel Blouin
  • Mickaël Hedde
  • Franck Jabot
  • Alan Vergnes
  • Anne Bonis
  • Sébastien Bonthoux
  • Bérenger Bourgeois
  • Vincent Bretagnolle
  • Rui Catarino
  • Camille Coux
  • Antoine Gardarin
  • Brice Giffard
  • Antoine Le Gal
  • Jane Lecomte
  • Paul Miguet
  • Séverine Piutti
  • Adrien Rusch
  • Marine Zwicke
  • Denis Couvet
Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 28)

Abstract

The Green Revolution and the introduction of chemical fertilizers, synthetic pesticides and high yield crops had enabled to increase food production in the mid and late 20th. The benefits of this agricultural intensification have however reached their limits since yields are no longer increasing for many crops, negative externalities on the environment and human health are now recognized and economic inequality between farmers have increased. Agroecology has been proposed to secure food supply with fewer or lower negative environmental and social impacts than intensive agriculture. Agroecology principles are based on the recognition that biodiversity in agroecosystems can provide more than only food, fibre and timber. Hence, biodiversity and its associated functions, such as pollination, pest control, and mechanisms that maintain or improve soil fertility, may improve production efficiency and sustainability of agroecosystems. Although appealing, promoting ecological-based agricultural production is not straightforward since agroecosystems are socio-ecosystems with complex interactions between the ecological and social systems that act at different spatial and temporal scales. To be operational, agroecology thus requires understanding the relationships between biodiversity, functions and management, as well as to take into account the links between agriculture, ecology and the society. Here we review current knowledge on (i) the effect of landscape context on biodiversity and ecosystem functions and (ii) trophic and non-trophic interactions in ecological networks in agroecosystems. In particular, many insights have been made these two previous decades on (i) the interacting effects of management and landscape characteristics on biodiversity, (ii) the crucial role of plant diversity in delivering multiple services and (iii) the variety of ecological belowground mechanisms determining soil fertility in interaction with aboveground processes. However, we also pinpointed the absence of consensus on the effects of landscape heterogeneity on biodiversity and the need for a better mechanistic understanding of the effects of landscape and agricultural variables on farmland food webs and related services. We end by proposing new research avenues to fill knowledge gaps and implement agroecological principles within operational management strategies.

Keywords

Agroecology Ecological intensification Ecosystem services Eco-evolutionary dynamics Biotic interactions Landscape heterogeneity Socio-ecological systems 

Notes

Acknowledgements

This study is an initiative of the “Ecology and Agriculture” group of the French Ecological Society (Société Française d’Ecologie, Sfe).

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sabrina Gaba
    • 1
    • 18
  • Audrey Alignier
    • 2
  • Stéphanie Aviron
    • 2
  • Sébastien Barot
    • 3
  • Manuel Blouin
    • 1
  • Mickaël Hedde
    • 4
  • Franck Jabot
    • 5
  • Alan Vergnes
    • 6
  • Anne Bonis
    • 7
  • Sébastien Bonthoux
    • 8
  • Bérenger Bourgeois
    • 1
  • Vincent Bretagnolle
    • 9
  • Rui Catarino
    • 9
  • Camille Coux
    • 9
  • Antoine Gardarin
    • 10
  • Brice Giffard
    • 11
  • Antoine Le Gal
    • 12
  • Jane Lecomte
    • 12
  • Paul Miguet
    • 13
  • Séverine Piutti
    • 14
  • Adrien Rusch
    • 15
  • Marine Zwicke
    • 16
  • Denis Couvet
    • 17
  1. 1.Agroécologie AgroSup Dijon, INRA, Université Bourgogne Franche-ComtéDijonFrance
  2. 2.UMR 0980 BAGAP, Agrocampus Ouest, ESARennes cedexFrance
  3. 3.IEES-Paris (CNRS, UPMC, IRD, INRA, UPEC), UPMCParis cedex 05France
  4. 4.INRA, UMR 1402 ECOSYSVersailles CedexFrance
  5. 5.Irstea, UR LISC, Centre de Clermont-FerrandAubièreFrance
  6. 6.Université Paul Valery, Montpellier 3, UMR 5175 CEFE, (CNRS, UM UPVM3, EPHE, IRD)MontpellierFrance
  7. 7.UMR 6553 ECOBIO, Université Rennes I- CNRSRennes CedexFrance
  8. 8.UMR 7324 CITERES, CNRS, INSA Centre Val de Loire, Ecole de la Nature et du PaysageBloisFrance
  9. 9.Centre d’Etudes Biologiques de Chizé, UMR7372, CNRS, Université de La RochelleVilliers-en-BoisFrance
  10. 10.UMR Agronomie, INRA, AgroParisTech Université Paris-SaclayThiverval-GrignonFrance
  11. 11.Bordeaux Sciences Agro, Université de BordeauxGradignanFrance
  12. 12.Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech Université Paris-SaclayOrsayFrance
  13. 13.INRA, UR 1115, PSH (Plantes et Systèmes de culture Horticoles)AvignonFrance
  14. 14.UMR 1121 Agronomie et Environnement, INRA, Université de LorraineVandoeuvre-lès-NancyFrance
  15. 15.UMR SAVE, INRA, Bordeaux Science Agro, ISVV, Université de BordeauxVillenave d’OrnonFrance
  16. 16.UPEC, Institute of Ecology and Environmental Sciences of Paris – UMR7618CréteilFrance
  17. 17.UMR CESCO, MNHN-SU-CNRSParisFrance
  18. 18.USC 1339, Centre d’Etudes Biologiques de Chizé, INRA, Villiers en BoisBeauvoir sur NiortFrance

Personalised recommendations