Skip to main content

Sepsis-Associated Acute Kidney Injury: Making Progress Against a Lethal Syndrome

  • Chapter
  • First Online:
Critical Care Nephrology and Renal Replacement Therapy in Children
  • 1332 Accesses

Abstract

Sepsis and acute kidney injury (AKI) are disease processes that increase morbidity and mortality in hospitalized patients. Though separate entities, sepsis and AKI carry considerable pathophysiologic overlap and significantly worsen patient outcomes when concurrent. Sepsis is the most commonly associated condition with AKI in critically ill patients (S-AKI). Despite a multitude of epidemiologic data describing prevalence and associated outcomes, understanding of the complicated pathophysiology driving S-AKI is only superficial, appreciation of the disease phenotype is lacking, and current diagnostics are outdated. Ultimately, these shortcomings contribute to a large knowledge gap, resulting in a paucity of focused and effective therapeutic options. This chapter will detail available data, delineate the current paradigm and describe limitations, and then create a narrative describing a path necessary to follow in order to better manage S-AKI. Clinicians and researchers must move past the status quo, challenge assumptions, and simultaneously innovate, collaborate, and advocate for their patients suffering from this lethal condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jawad I, Luksic I, Rafnsson SB. Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. J Glob Health. 2012;2(1):010404.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Martin GS, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54.

    Article  PubMed  Google Scholar 

  3. Gaieski DF, et al. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41(5):1167–74.

    Article  PubMed  Google Scholar 

  4. Annane D, et al. Current epidemiology of septic shock: the CUB-Rea network. Am J Respir Crit Care Med. 2003;168(2):165–72.

    Article  PubMed  Google Scholar 

  5. Angus DC, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  6. Martin CM, et al. A prospective, observational registry of patients with severe sepsis: the Canadian Sepsis treatment and response registry. Crit Care Med. 2009;37(1):81–8.

    Article  PubMed  Google Scholar 

  7. Karlsson S, et al. Incidence, treatment, and outcome of severe sepsis in ICU-treated adults in Finland: the Finnsepsis study. Intensive Care Med. 2007;33(3):435–43.

    Article  PubMed  Google Scholar 

  8. de Mendonca A, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000;26(7):915–21.

    Article  PubMed  Google Scholar 

  9. Uchino S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bagshaw SM, et al. Changes in the incidence and outcome for early acute kidney injury in a cohort of Australian intensive care units. Crit Care. 2007;11(3):R68.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35(8):1837–43. quiz 1852

    Article  PubMed  Google Scholar 

  12. Bagshaw SM, et al. A multi-Centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant. 2008;23(4):1203–10.

    Article  PubMed  Google Scholar 

  13. Andrikos E, et al. Epidemiology of acute renal failure in ICUs: a multi-center prospective study. Blood Purif. 2009;28(3):239–44.

    Article  PubMed  Google Scholar 

  14. Thakar CV, et al. Incidence and outcomes of acute kidney injury in intensive care units: a veterans administration study. Crit Care Med. 2009;37(9):2552–8.

    Article  PubMed  Google Scholar 

  15. Medve L, et al. Epidemiology of acute kidney injury in Hungarian intensive care units: a multicenter, prospective, observational study. BMC Nephrol. 2011;12:43.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Piccinni P, et al. Prospective multicenter study on epidemiology of acute kidney injury in the ICU: a critical care nephrology Italian collaborative effort (NEFROINT). Minerva Anestesiol. 2011;77(11):1072–83.

    PubMed  CAS  Google Scholar 

  17. Nisula S, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39(3):420–8.

    Article  PubMed  Google Scholar 

  18. Poukkanen M, et al. Acute kidney injury in patients with severe sepsis in Finnish intensive care units. Acta Anaesthesiol Scand. 2013;57(7):863–72.

    Article  CAS  PubMed  Google Scholar 

  19. Bailey D, et al. Risk factors of acute renal failure in critically ill children: a prospective descriptive epidemiological study. Pediatr Crit Care Med. 2007;8(1):29–35.

    Article  Google Scholar 

  20. Schneider J, et al. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38(3):933–9.

    Article  CAS  PubMed  Google Scholar 

  21. Vachvanichsanong P, et al. Childhood acute renal failure: 22-year experience in a university hospital in southern Thailand. Pediatrics. 2006;118(3):e786–91.

    Article  PubMed  Google Scholar 

  22. Kellum JA, Angus DC. Patients are dying of acute renal failure. Crit Care Med. 2002;30(9):2156–7.

    Article  PubMed  Google Scholar 

  23. Bagshaw SM, et al. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12(2):R47.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bagshaw SM, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2007;2(3):431–9.

    Article  PubMed  Google Scholar 

  25. Kolhe NV, et al. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 hours after admission to an adult, general critical care unit: application of predictive models from a secondary analysis of the ICNARC case mix Programme database. Crit Care. 2008;12(Suppl 1):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Daher EF, et al. Acute kidney injury in an infectious disease intensive care unit – an assessment of prognostic factors. Swiss Med Wkly. 2008;138(9–10):128–33.

    PubMed  Google Scholar 

  27. Alkandari O, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15(3):R146.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pundziene B, Dobiliene D, Rudaitis S. Acute kidney injury in pediatric patients: experience of a single center during an 11-year period. Medicina (Kaunas). 2010;46(8):511–5.

    Article  Google Scholar 

  29. Duzova A, et al. Etiology and outcome of acute kidney injury in children. Pediatr Nephrol. 2010;25(8):1453–61.

    Article  PubMed  Google Scholar 

  30. Mehta P, et al. Incidence of acute kidney injury in hospitalized children. Indian Pediatr. 2012;49(7):537–42.

    Article  PubMed  Google Scholar 

  31. Lopes JA, et al. Acute kidney injury in patients with sepsis: a contemporary analysis. Int J Infect Dis. 2009;13(2):176–81.

    Article  PubMed  Google Scholar 

  32. Plotz FB, et al. Effect of acute renal failure on outcome in children with severe septic shock. Pediatr Nephrol. 2005;20(8):1177–81.

    Article  PubMed  Google Scholar 

  33. Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993;328(20):1471–7.

    Article  CAS  PubMed  Google Scholar 

  34. Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  35. Ceneviva G, et al. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics. 1998;102(2):e19.

    Article  CAS  PubMed  Google Scholar 

  36. Riley C, et al. Pediatric sepsis: preparing for the future against a global scourge. Curr Infect Dis Rep. 2012;14(5):503–11.

    Article  PubMed  Google Scholar 

  37. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585.

    Article  PubMed  Google Scholar 

  38. Gomez H, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41(1):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chawla LS. Disentanglement of the acute kidney injury syndrome. Curr Opin Crit Care. 2012;18(6):579–84.

    Article  PubMed  Google Scholar 

  40. Liu VX, et al. The timing of early antibiotics and hospital mortality in Sepsis. Am J Respir Crit Care Med. 2017;196(7):856–63.

    Article  PubMed  Google Scholar 

  41. Prowle JR. Sepsis-associated AKI. Clin J Am Soc Nephrol. 2018;13(2):339–42.

    Article  CAS  PubMed  Google Scholar 

  42. Schneider AG, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2013;39(6):987–97.

    Article  CAS  PubMed  Google Scholar 

  43. Wald R, et al. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study*. Crit Care Med. 2014;42(4):868–77.

    Article  CAS  PubMed  Google Scholar 

  44. Ronco C, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000;356(9223):26–30.

    Article  CAS  PubMed  Google Scholar 

  45. Network, V.N.A.R.F.T, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.

    Article  Google Scholar 

  46. Investigators, R.R.T.S, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38.

    Article  Google Scholar 

  47. Joannes-Boyau O, et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39(9):1535–46.

    Article  PubMed  Google Scholar 

  48. Feltes CM, Van Eyk J, Rabb H. Distant-organ changes after acute kidney injury. Nephron Physiol. 2008;109(4):p80–4.

    Article  CAS  PubMed  Google Scholar 

  49. Shiao CC, et al. Long-term remote organ consequences following acute kidney injury. Crit Care. 2015;19:438.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yap SC, Lee HT. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology. 2012;116(5):1139–48.

    Article  PubMed  Google Scholar 

  51. Shin YJ, et al. Age-related differences in kidney injury biomarkers induced by cisplatin. Environ Toxicol Pharmacol. 2014;37(3):1028–39.

    Article  CAS  PubMed  Google Scholar 

  52. Vandijck DM, et al. Severe infection, sepsis and acute kidney injury. Acta Clin Belg. 2007;62(Suppl 2):332–6.

    Article  PubMed  Google Scholar 

  53. Langenberg C, et al. Renal blood flow in sepsis. Crit Care. 2005;9(4):R363–74.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Langenberg C, et al. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69(11):1996–2002.

    Article  CAS  PubMed  Google Scholar 

  55. Scicluna BP, et al. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5(10):816–26.

    Article  PubMed  Google Scholar 

  56. Wong HR, et al. Improved risk stratification in pediatric septic shock using both protein and mRNA biomarkers. PERSEVERE-XP. Am J Respir Crit Care Med. 2017;196(4):494–501.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Langenberg C, et al. The histopathology of septic acute kidney injury: a systematic review. Crit Care. 2008;12(2):R38.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care. 2014;20(6):588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chvojka J, et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008;12(6):R164.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Doi K, et al. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 2009;119(10):2868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goldstein SL, Chawla LS. Renal angina. Clin J Am Soc Nephrol. 2010;5(5):943–9.

    Article  PubMed  Google Scholar 

  62. Basu RK, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85(3):659–67.

    Article  PubMed  Google Scholar 

  63. Hoste EA, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.

    Article  PubMed  Google Scholar 

  64. Kaddourah A, et al. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20.

    Article  PubMed  Google Scholar 

  65. Fitzgerald JC, et al. Acute kidney injury in pediatric severe Sepsis: an independent risk factor for death and new disability. Crit Care Med. 2016;44(12):2241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kellum JA, et al. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26(9):2231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen S. Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol. 2013;24(6):877–88.

    Article  CAS  PubMed  Google Scholar 

  68. Bagshaw SM, et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med. 2010;36(3):452–61.

    Article  CAS  PubMed  Google Scholar 

  69. Kim H, et al. Plasma neutrophil gelatinase-associated lipocalin as a biomarker for acute kidney injury in critically ill patients with suspected sepsis. Clin Biochem. 2013;46(15):1414–8.

    Article  CAS  PubMed  Google Scholar 

  70. Tu Y, et al. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Ren Fail. 2014;36(10):1559–63.

    Article  CAS  PubMed  Google Scholar 

  71. Basu RK, et al. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol. 2014;9(4):654–62.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Powell TC, et al. Association of inflammatory and endothelial cell activation biomarkers with acute kidney injury after sepsis. Spring. 2014;3:207.

    Article  CAS  Google Scholar 

  73. Kashani K, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Devarajan P. Genomic and proteomic characterization of acute kidney injury. Nephron. 2015;131(2):85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chawla LS, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17(5):R207.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Solomon R, Goldstein S. Real-time measurement of glomerular filtration rate. Curr Opin Crit Care. 2017;23(6):470–4.

    Article  PubMed  Google Scholar 

  77. Gaudry S, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–33.

    Article  PubMed  Google Scholar 

  78. Zarbock A, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–9.

    Article  CAS  PubMed  Google Scholar 

  79. Smith OM, et al. Standard versus accelerated initiation of renal replacement therapy in acute kidney injury (STARRT-AKI): study protocol for a randomized controlled trial. Trials. 2013;14:320.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee SY, et al. Distinct pathophysiologic mechanisms of septic acute kidney injury: role of immune suppression and renal tubular cell apoptosis in murine model of septic acute kidney injury. Crit Care Med. 2012;40(11):2997–3006.

    Article  CAS  PubMed  Google Scholar 

  81. Homsi E, Janino P, de Faria JB. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 2006;69(8):1385–92.

    Article  CAS  PubMed  Google Scholar 

  82. Wang W, et al. Ghrelin protects mice against endotoxemia-induced acute kidney injury. Am J Physiol Renal Physiol. 2009;297(4):F1032–7.

    Article  CAS  PubMed  Google Scholar 

  83. Simon F, et al. Comparison of cardiac, hepatic, and renal effects of arginine vasopressin and noradrenaline during porcine fecal peritonitis: a randomized controlled trial. Crit Care. 2009;13(4):R113.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lee HT, et al. A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R959–69.

    Article  CAS  PubMed  Google Scholar 

  85. Bahlmann FH, Fliser D. Erythropoietin and renoprotection. Curr Opin Nephrol Hypertens. 2009;18(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  86. Pathak E, MacMillan-Crow LA, Mayeux PR. Role of mitochondrial oxidants in an in vitro model of sepsis-induced renal injury. J Pharmacol Exp Ther. 2012;340(1):192–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pickkers P, et al. Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care. 2012;16(1):R14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajit K. Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basu, R.K. (2018). Sepsis-Associated Acute Kidney Injury: Making Progress Against a Lethal Syndrome. In: Deep, A., Goldstein, S. (eds) Critical Care Nephrology and Renal Replacement Therapy in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-90281-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90281-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90280-7

  • Online ISBN: 978-3-319-90281-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics