Skip to main content

Abstract

Over the past several decades, the clinical aspects of acute kidney injury (AKI) and its management with renal replacement therapy (RRT) have evolved substantially in both the pediatric and adult patient populations. The development of AKI in children is now recognized to be a common occurrence, especially among critically ill neonates and infants, and is associated with substantial morbidity and mortality. With respect to dialytic management, continuous RRT (CRRT) has supplanted peritoneal dialysis as the preferred dialytic modality for critically ill pediatric AKI patients in many parts of the world, especially the United States. Although initial CRRT devices for both adults and children involved technology adapted from chronic hemodialysis, dedicated CRRT devices specifically designed for critically ill adult patients have been widely available for more than two decades now. However, these devices generally have not had specific indications for pediatric use due to limitations related to fluid accuracy and extracorporeal circuit volumes. The recent introduction of pediatric-specific machines obviates the need to provide CRRT “off-label” with adult-based CRRT devices to small pediatric patients. In this chapter, some of the clinical challenges associated with treating the complex critically ill AKI patient population are discussed and several important questions for the future are addressed. In addition to CRRT technology, the topics of therapy dosing, timing of initiation and termination, fluid management, drug dosing, and data analytics are discussed, with emphasis on anticipated developments over the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kramer P, Schrader J, Bohnsack W, Grieben G, Grone HJ, Scheler F. Continuous arteriovenous haemofiltration. A new kidney replacement therapy. Proc Eur Dial Transplant Assoc. 1981;18:743–9.

    PubMed  CAS  Google Scholar 

  2. Ronco C, Brendolan A, Bragantini L, et al. Arteriovenous hemodiafiltration associated with continuous arteriovenous hemofiltration: a combined therapy for acute renal failure in the hypercatabolic patient. Blood Purif. 1987;5(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  3. Ricci Z, Bonello M, Salvatori G, et al. Continuous renal replacement technology: from adaptive technology and early dedicated machines towards flexible multipurpose machine platforms. Blood Purif. 2004;22(3):269–76.

    Article  PubMed  Google Scholar 

  4. KDIGO clinical practice guideline for acute kidney injury: modality of renal replacement therapy in AKI. Kidney Int. 2012;2(1):107–10.

    Google Scholar 

  5. Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376(1):11–20.

    Article  PubMed  Google Scholar 

  6. Warady BA, Bunchman T. Dialysis therapy for children with acute renal failure: survey results. Ped Nephrol. 2000;15:11–3.

    Article  CAS  Google Scholar 

  7. Ronco C, Garzotto F, Brendolan A, et al. Continuous renal replacement therapy in neonates and small infants: development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet. 2014;383:1807–13.

    Article  PubMed  Google Scholar 

  8. Clark WR, Neri M, Garzotto F, Goldstein SL, Ricci Z, Ronco C. The future of critical care: renal support in 2027. Crit Care. 2017;21:92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kellum JA, Ronco C. The 17th acute disease quality initiative international consensus conference: introducing precision continuous renal replacement therapy. Blood Purif. 2016;42(3):221–3.

    Article  PubMed  Google Scholar 

  10. Bagshaw SM, Chakravarthi MR, Ricci Z, et al on behalf of the ADQI Consensus Group. Precision continuous renal replacement therapy: solute control in continuous renal replacement therapy. Blood Purif. 2016;42(3):238–47.

    Article  PubMed  Google Scholar 

  11. Rewa OG, Villeneuve PM, Eurich DT, et al. Quality indicators of continuous renal replacement therapy (CRRT) care in critically ill patients: protocol for a systematic review. Syst Rev. 2015;4:102.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cruz D, Bellomo R, Kellum JA, de Cal M, Ronco C. The future of extracorporeal support. Crit Care Med. 2008;36(4 Suppl):S243–52.

    Article  PubMed  Google Scholar 

  13. Clark WR, Garzotto F, Neri M, Lorenzin A, Zaccaria M, Ronco C. Data analytics for continuous renal replacement therapy: historical limitations and recent technology advances. Int J Artif Organs. 2016;39(8):399–406.

    Article  PubMed  Google Scholar 

  14. Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000;356(9223):26–30.

    Article  CAS  PubMed  Google Scholar 

  15. VA/NIH Acute Renal Failure Trial Network, Palevsky PM, Zhang JH, O'Connor TZ, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20.

    Article  Google Scholar 

  16. RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361(17):1627–38.

    Article  Google Scholar 

  17. KDIGO clinical practice guideline for acute kidney injury: dose of renal replacement therapy in AKI. Kidney Int. 2012;2(1):113–5.

    Google Scholar 

  18. Ricci Z, Guzzi F, Tuccinardi G, et al. Dialytic dose in pediatric continuous renal replacement therapy patients. Minerva Pediatr. 2016;68:366–73.

    PubMed  Google Scholar 

  19. Huang Z, Letteri JJ, Clark WR, Ronco C. Operational characteristics of continuous renal replacement therapy modalities used for critically ill patients with acute kidney injury. Int J Artif Organs. 2008;31:525–34.

    Article  CAS  PubMed  Google Scholar 

  20. Clark WR, Leblanc M, Ricci Z, Ronco C. Quantification and dosing of renal replacement therapy in acute kidney injury: a reappraisal. Blood Purif. 2017;44:140–55.

    Article  PubMed  Google Scholar 

  21. Gotch FA. The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrol Dial Transplant. 1998;13(Suppl 6):10–4.

    Article  CAS  PubMed  Google Scholar 

  22. Ricci Z, Guzzi F, Tuccinardi G, et al. Dose prescription and delivery in neonates with congenital heart diseases treated with continuous veno-venous hemofiltration. Ped Crit Care Med. 2017;18(7):623–9.

    Article  Google Scholar 

  23. Claure-Del Granado R, Macedo E, Chertow GM, et al. Effluent volume in continuous renal replacement therapy overestimates the delivered dose of dialysis. Clin J Am Soc Nephrol. 2011;6(3):467–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cruz D, Bobek I, Lentini P, Soni S, Chionh CY, Ronco C. Machines for continuous renal replacement therapy. Semin Dial. 2009;22(2):123–32.

    Article  PubMed  Google Scholar 

  25. Kakajiwala A, Jemielita T, Hughes JZ, et al. Membrane pressures predict clotting of pediatric continuous renal replacement therapy circuits. Pediatric Nephrol. 2017;32:1251–61.

    Article  Google Scholar 

  26. Doi K. Role of kidney injury in sepsis. J Intensive Care. 2016;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kellum JA, Gómez H, Gómez A, Murray P, Ronco C. ADQI XIV workgroup: XIV sepsis phenotypes and targets for blood purification in sepsis: the Bogota consensus. Shock. 2016;45(3):242–8.

    Article  CAS  PubMed  Google Scholar 

  28. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gaudry S, Hajage D, Schortgen F, et al. AKIKI study group: initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–33.

    Article  PubMed  Google Scholar 

  30. Wald R, Adhikari NK, Smith OM, Canadian Critical Care Trials Group, et al. Comparison of standard and accelerated initiation of renal replacement therapy in acute kidney injury. Kidney Int. 2015;88(4):897–904.

    Article  CAS  PubMed  Google Scholar 

  31. Macedo E, Mehta RL. When should renal replacement therapy be initiated for acute kidney injury. Semin Dial. 2011;24:132–7.

    Article  PubMed  Google Scholar 

  32. Ostermann M, Joannidis M, Pani A, Acute Disease Quality Initiative (ADQI) Consensus Group, et al. Patient selection and timing of continuous renal replacement therapy. Blood Purif. 2016;42(3):224–37.

    Article  PubMed  Google Scholar 

  33. Kellum JA. How can we define recovery after acute kidney injury? Considerations from epidemiology and clinical trial design. Nephron Clin Pract. 2014;127:81–8.

    Article  PubMed  Google Scholar 

  34. Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS. Recovery after acute kidney injury. Am J Respir Crit Care Med. 2017;195(6):784–91.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gist KM, Goldstein SL, Wrona J, et al. Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol. 2017;32(9):1611–9. https://doi.org/10.1007/s00467-017-3655-y.

    Article  PubMed  Google Scholar 

  36. Menon S, Goldstein SL, Mottes T, et al. Urinary biomarker incorporation into the renal angina index early in intensive care unit admission optimizes acute kidney injury prediction in critically ill children: a prospective cohort study. Nephrol Dial Transplant. 2016;31(4):586–94.

    Article  CAS  PubMed  Google Scholar 

  37. Basu RK, Wong HR, Krawczeski CD, et al. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery. J Am Coll Cardiol. 2014;64(25):2753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.

    Article  Google Scholar 

  39. Goldstein SL. Fluid management in acute kidney injury. J Intensive Care Med. 2014;29:183–9.

    Article  PubMed  Google Scholar 

  40. Garzotto F, Ostermann M, Martin-Langerwerf D, et al. The dose response multicentre investigation on fluid assessment (DoReMIFA) in critically ill patients. Crit Care. 2016;20:196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Honore PM, Jacobs R, Hendrickx I, et al. Prevention and treatment of sepsis-induced acute kidney injury: an update. Ann Intensive Care. 2015;5(1):51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alobaidi R, Basu RK, Goldstein SL, Bagshaw SM. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35(1):2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Downes KJ, Cowden C, Laskin BL, et al. Association of acute kidney injury with concomitant vancomycin and piperacillin/tazobactam treatment among hospitalized children. JAMA Pediatr. 2017;171(12):e173219. https://doi.org/10.1001/jamapediatrics.2017.3219.

    Article  PubMed  Google Scholar 

  44. Goldstein SL. Medication-induced acute kidney injury. Curr Opin Crit Care. 2016;22(6):542–5.

    Article  PubMed  Google Scholar 

  45. Nolin TD, Aronoff GR, Fissell WH, Kidney Health Initiative, et al. Pharmacokinetic assessment in patients receiving continuous RRT: perspectives from the kidney health initiative. Clin J Am Soc Nephrol. 2015;10(1):159–64.

    Article  CAS  PubMed  Google Scholar 

  46. Shaw AR, Mueller BA. Antibiotic dosing in continuous renal replacement therapy. Adv Chronic Kidney Dis. 2017;24(4):219–27.

    Article  PubMed  Google Scholar 

  47. Nehus EJ, Mizuno T, Cox S, Goldstein SL, Vinks AA. Pharmacokinetics of meropenem in children receiving continuous renal replacement therapy: validation of clinical trial simulations. J Clin Pharmacol. 2016;56(3):291–7.

    Article  CAS  PubMed  Google Scholar 

  48. Ostermann M, Chawla LS, Forni LG, et al. Drug management in acute kidney disease—report of the ADQI XVI meeting. Br J Clin Pharmacol. 2018;84(2):396–403. https://doi.org/10.1111/bcp.13449.

    Article  PubMed  Google Scholar 

  49. Kane-Gill SL, Goldstein SL. Drug-induced acute kidney injury: a focus on risk assessment for prevention. Crit Care Clin. 2015;31(4):675–84.

    Article  PubMed  Google Scholar 

  50. Goldstein SL, Mottes T, Simpson K, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 2016;90(1):212–21.

    Article  PubMed  Google Scholar 

  51. Heung M, Bagshaw SM, House AA, Juncos LA, Piazza R, Goldstein SL. CRRTnet: a prospective, multi-national, observational study of continuous renal replacement therapy practices. BMC Nephrol. 2017;18(1):222.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mottes T, Owens T, Niedner M, Juno J, Shanley TP, Heung M. Improving delivery of continuous renal replacement therapy: impact of a simulation-based educational intervention. Pediatr Crit Care Med. 2013;14(8):747–54.

    Article  PubMed  Google Scholar 

  53. Symons JM, Chua AN, Somers MJ, et al. Demographic characteristics of pediatric continuous renal replacement therapy: a report of the prospective pediatric continuous renal replacement therapy registry. Clin J Am Soc Nephrol. 2007;2(4):732–8.

    Article  Google Scholar 

  54. Goldstein SL, Somers MJ, Baum MA, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8.

    Article  PubMed  Google Scholar 

  55. Flores FX, Brophy PD, Symons JM, et al. Continuous renal replacement therapy (CRRT) after stem cell transplantation. A report from the prospective pediatric CRRT registry group. Pediatr Nephrol. 2008;23(4):625–30.

    Article  Google Scholar 

  56. Askenazi DJ, Goldstein SL, Koralkar R, et al. Continuous renal replacement therapy for children ≤10 kg: a report from the prospective pediatric continuous renal replacement therapy registry. J Pediatr. 2013;162(3):587–92.

    Article  PubMed  Google Scholar 

  57. Cerda J, Baldwin I, Honore PM, Villa G, Kellum JA, Ronco C, ADQI Consensus Group. Role of technology in continuous renal replacement therapy for the management of critically ill patients: from adoptive technology to precision continuous renal replacement therapy. Blood Purif. 2016;42:248–65.

    Article  CAS  PubMed  Google Scholar 

  58. Kashani K, Herasevich V. Utilities of electronic medical records to improve quality of care for acute kidney injury: past, present, and future. Nephron Clin Prac. 2015;131:92–6.

    Google Scholar 

  59. Ronco C, Davenport A, Gura V. The future of the artificial kidney: moving towards wearable and miniaturized devices. Nefrologia. 2011;31:9–16.

    PubMed  CAS  Google Scholar 

  60. Gura V, Rivera MB, Bieber S, et al. A wearable artificial kidney for patients with end-stage renal disease. JCI Insight. 2016;1(8). pii: e86397.

    Google Scholar 

  61. Fissell WH, Roy S, Davenport A. Achieving more frequent and longer dialysis for the majority: wearable dialysis and implantable artificial kidney devices. Kidney Int. 2013;84(2):256–64.

    Article  PubMed  Google Scholar 

  62. Ricci Z, Goldstein SL. Pediatric continuous renal replacement therapy. Contrib Nephrol. 2016;187:121–30.

    PubMed  Google Scholar 

  63. Ronco C, Garzotto F, Ricci Z. CARPEDIEM (cardio-renal pediatric dialysis emergency machine): evolution of continuous renal replacement therapies in infants. A personal journey. Pediatr Nephrol. 2012;27:1203–11.

    Article  PubMed  Google Scholar 

  64. PrisMax Operator’s Manual (AW6005, Rev. F) 2017, pages 29,127, Baxter Healthcare, Deerfield, IL USA.

    Google Scholar 

  65. Bagshaw SM, Goldstein SL, Ronco C, Kellum JA. ADQI 15 consensus group acute kidney injury in the era of big data: the 15(th) consensus conference of the acute dialysis quality initiative (ADQI). Can J Kidney Health Dis. 2016;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Siew ED, Peterson JF, Eden SK, et al. Outpatient nephrology referral rates after acute kidney injury. J Am Soc Nephrol. 2012;23:305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Silver SA, Goldstein SL, Harel Z, et al. Ambulatory care after acute kidney injury: an opportunity to improve patient outcomes. Can J Kidney Health Dis. 2015;2:36.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hoste EA, Kashani K, Gibney N, on behalf of the 15 ADQI Consensus Group, et al. Impact of electronic-alerting of acute kidney injury: workgroup statements from the 15th ADQI consensus conference. Can J Kidney Health Dis. 2016;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kirkendall ES, Spires WL, Mottes TA, Schaffzin JK, Barclay C, Goldstein SL. Development and performance of electronic acute kidney injury triggers to identify pediatric patients at risk for nephrotoxic medication-associated harm. Appl Clin Inform. 2014;5(2):313–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goldstein SL. Automated/integrated real-time clinical decision support in acute kidney injury. Curr Opin Crit Care. 2015;21(6):485–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clark, W.R., Goldstein, S.L., Letteri, J., Ronco, C. (2018). The Future of Pediatric CRRT. In: Deep, A., Goldstein, S. (eds) Critical Care Nephrology and Renal Replacement Therapy in Children. Springer, Cham. https://doi.org/10.1007/978-3-319-90281-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90281-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90280-7

  • Online ISBN: 978-3-319-90281-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics