Skip to main content

Phycoremediation: A Green Technology for Nutrient Removal from Greywater

  • Chapter
  • First Online:
Management of Greywater in Developing Countries

Abstract

Phycoremediation as a green technology relies on microalgae which have high potential to grow in greywater. The presence of high levels of nutrients is necessary for microalgae growth to improve the efficiency of this process. However, the main consideration of the phycoremediation process of greywater lies in the wastewater composition, the selection of microalgae strains with high potential to compete with the indigenous organisms in the greywater and remove nutrients and elements from greywater as well as microalgae, which possess the ability to survive under stressful environmental conditions. Besides, this process can be applied to individual houses. The cost of the phycoremediation process, source of microalgae and energy required are the main points which need to be discussed further. The study indicated that the phycoremediation process is most effective for the treatment of greywater. However, many aspects have to be evaluated in order to achieve the high-quality-treated greywater. In this chapter, the effectiveness of phycoremediation and the mechanism of nutrient removal are discussed. Most microalgae species exhibited greater efficiency in removing nitrogen compared to phosphorous due to the nature of the anabolic pathway of microalgae cells and the ability of nitrogen compounds to diffuse through the cell membrane faster than phosphorous compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan A, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  • Abeliovich A (1986) Algae in wastewater oxidation ponds. In: Richmond A (ed) Handbook of microbial mass culture. CRC Press, Boca Raton, pp 331–338

    Google Scholar 

  • Abou-Shanab RA, Ji MK, Kim HC, Paeng KJ, Jeon BH (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage 115:257–264

    Article  CAS  Google Scholar 

  • Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int J Phytoremed 17(10):907–916

    Article  CAS  Google Scholar 

  • Alabi AO, Bibeau E, Tampier M (2009) Microalgae technologies & processes for biofuels-bioenergy production in British Columbia: current technology, suitability & barriers to implementation. British Columbia Innovation Council, Vancouver

    Google Scholar 

  • Al-Gheethi AA, Ismail N, Efaq AN, Bala JD, Al-Amery RM (2015) Solar disinfection and lime stabilization processes for reduction of pathogenic bacteria in sewage effluents and biosolids for agricultural purposes in Yemen. J Water Reuse Des 5(3):419–429

    Article  CAS  Google Scholar 

  • Al-Gheethi AA, Mohamed RM, Jais NM, Efaq AN, Abdullah AH, Wurochekke AA, Amir-Hashim MK (2017) Influence of pathogenic bacterial activity on growth of Scenedesmus sp. and removal of nutrients from public market wastewater. J Water Health. Online

    Google Scholar 

  • Al-Nozaily F, Alaerts G, Veenstra S (2000) Performance of duckweed-covered sewage lagoons II. Nitrogen and phosphorus balance and plant productivity. Water Res 34(10):2734–2741

    Article  CAS  Google Scholar 

  • Arceivala SJ (1981) Wastewater treatment and disposal; engineering and ecology in pollution control, vol 15. M. Dekker, New York

    Google Scholar 

  • Atiku H, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Kassim AHM (2016) Harvesting of microalgae biomass from the phycoremediation process of greywater. Environ Sci Poll Res 23(24):24624–24641

    Article  CAS  Google Scholar 

  • Bich NN, Yaziz MI, Bakti NAK (1999) Combination of Chlorella vulgaris and Eichhornia crassipes for wastewater nitrogen removal. Water Res 33:2357–2362

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59(1):75–84

    Google Scholar 

  • Gani P, Sunar NM, Matias-Peralta HM, Abdul Latiff AA, Kamaludin NS, Parjo UK, Er CM (2015) Experimental study for phycoremediation of Botryococcus sp. on greywater. Appl Mech Mater 773:1312–1317

    Article  Google Scholar 

  • Gokulan R, Sathish N, Kumar RP (2013) Treatment of grey water using hydrocarbon producing Botryococcus braunii. Int J Chem Tech Res 5(3):1390–1392

    CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  • Hodaifa G, Martinez ME, Sanchez S (2008) Use of industrial wastewater from olive oil extraction for biomass production of Scenedesmus obliquus. Biores Technol 99(5):1111–1117

    Article  CAS  Google Scholar 

  • Hultberg M, Carlsson AS, Gustafsson S (2013).Treatment of drainage solution from hydroponic greenhouse production with microalgae. Biores Technol 136:401–406

    Google Scholar 

  • Jacobson SN, Alexander M (1981) Enhancement of the microbial dehalogenation of a model chlorinated compound. Appl Environ Microbiol 42:1062–1066

    CAS  Google Scholar 

  • Jais NM, Mohamed RMSR, Apandi WA, Matias-Peralta H (2015) Removal of nutrients and selected heavy metals in wet market wastewater by using microalgae Scenedesmus sp. Appl Mech Mater 773–774:1210–1214

    Article  Google Scholar 

  • Jais NM, Mohamed RMSR, Al-Gheethi AA, Hashim MA (2017) The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol Environ Policy 19(1):37–52

    Article  CAS  Google Scholar 

  • Jin Y, Veiga MC, Kennes C (2005) Bioprocesses for the removal of nitrogen oxides from polluted air. J Chem Technol Biotechnol 80:483–494

    Article  CAS  Google Scholar 

  • Jing S (2009). Removal of nitrogen and phosphorus from municipal wastewater using microalgae immobilized on twin-layer system. Ph.D. thesis, Universitätzu Köln, Germany

    Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  Google Scholar 

  • Kamarudin KF, Yaakob Z, Rajkumar R, Takriff MS, Tasirin SM (2013) Bioremediation of palm oil mill effluents (POME) using Scenedesmus dimorphus and Chlorella vulgaris. Int J Adv Sci Lett 19:2914–2918

    Google Scholar 

  • Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Biores Technol 98(11):2220–2228

    Article  CAS  Google Scholar 

  • Kothari R, Pathak VV, Kumar V, Singh DP (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Biores Technol 116:466–470

    Article  CAS  Google Scholar 

  • Kotteswari M, Murugesan S, Ranjith Kumar R (2012) Phycoremediation of dairy effluent by using the microalgae Nostoc sp. Int J Environ Res Dev 2(1):35–43

    Google Scholar 

  • Laliberte G, Olguin EJ, Noue JDL (1997) Mass cultivation and wastewater treatment using Spirulina. In: Vonshak A (ed) Spirulina platensis-physiology, cell biology and biotechnology. Taylor and Francis, London (UK), pp 59–73

    Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  Google Scholar 

  • Li X, Hu H, Gan K, Sun Y (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake and lipid accumulation of a freshwater microalga Scenedesmus sp. Biores Technol 101:5494–5500

    Article  Google Scholar 

  • Liu J, Ge Y, Cheng H, Wu L, Tian G (2013) Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system. Biores Technol 139:190–194

    Article  CAS  Google Scholar 

  • Martinez ME, Sanchez S, Jimenez JM, Yousfi EF, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Biores Technol 73(3):263–272

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, Chen P, Ruan R (2011) Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol 165:123–137

    Google Scholar 

  • Mohamed RM, Al-Gheethi AA, Aznin SS, Hasila AH, Wurochekke AA, Kassim AH (2017) Removal of nutrients and organic pollutants from household greywater by phycoremediation for safe disposal. Int J Energy Environ Eng:1–14

    Google Scholar 

  • Munoz R, Kollner C, Guieysse B (2009) Biofilm photobioreactors for the treatment of industrial wastewaters. J Hazard Mat 161(1):29–34

    Article  CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Pathak VV, Singh DP, Kothari R, Chopra AK (2014) Phycoremediation of textile wastewater by unicellular microalga Chlorella pyrenoidosa. Cell Mol Biol 60(5):35–40

    CAS  Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12:395–400

    Article  Google Scholar 

  • Rao HP, Kumar R, Raghavan BG, Subramanian VV, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA 37(1):07–14

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Richmond A (2004) Environmental effects on cell composition. In: Handbook of microalgae culture—biotechnology and applied phycology. Blackwell publishing, Oxford, UK, pp 83–93

    Google Scholar 

  • Sawayama S, Inoue S, Dote Y, Yokoyama SY (1995) CO2 fixation and oil production through microalga. Energy Convers Manage 36:729–731

    Article  CAS  Google Scholar 

  • Silambarasan T, Vikramathithan M, Dhandapani R, Mukesh DJ, Kalaichelvan PT (2012) Biological treatment of dairy effluent by microalgae. World J Sci Technol 2(7):132–134

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Tran NH, Bartlett JR, Kannangara GSK, Milev AS, Volk H, Wilson MA (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 89:265–274

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Microbiol 30:79–81

    CAS  Google Scholar 

  • Wang L, Li YC, Chen P, Min M, Chen YF, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Biores Technol 101:2623–2628

    Article  CAS  Google Scholar 

  • Whitacre JM (2010) Degeneracy: a link between evolvability, robustness and complexity in biological systems. Theoretical Biol Med Model 7(1):6

    Article  Google Scholar 

  • Wurochekke AA, Mohamed RMS, Al-Gheethi AA, Atiku H, Amir HM, Matias-Peralta HM (2016) Household greywater treatment methods using natural materials and their hybrid system. J Water Health 14(6):914–928

    Article  CAS  Google Scholar 

  • Xin HS, Schaefer DM, Liu QP, Axe DE, Meng QX (2010) Effects of polyurethane coated urea supplement on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. Asian-Aust J Anim Sci 23:491–500

    Article  CAS  Google Scholar 

  • Xu Y, Purton S, Baganz F (2013) Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Biores Technol 129:296–301

    Article  CAS  Google Scholar 

  • Yao L, Shi J, Miao X (2015) Mixed wastewater coupled with CO2 for microalgae culturing and nutrient removal. PLoS ONE 10(9):e0139117. https://doi.org/10.1371/journal.pone.0139117

    Article  CAS  Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–456

    Article  CAS  Google Scholar 

  • Zeng J, Singh D, Chen S (2011) Thermal decomposition kinetics of wheat straw treated by Phanerochaete chrysosporium. Int Biodeterior biodegradation 65(3):410–414

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Higher Education (MOHE) for supporting this research under FRGS vot 1574 and also the Research Management Centre (RMC) UTHM for providing grant IGSP U682 for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radin Maya Saphira Radin Mohamed or Adel Ali Saeed Al-Gheethi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wurochekke, A.A., Radin Mohamed, R.M.S., Al-Gheethi, A.A.S., Noman, E.A., Mohd Kassim, A.H. (2019). Phycoremediation: A Green Technology for Nutrient Removal from Greywater. In: Radin Mohamed, R., Al-Gheethi, A., Mohd Kassim, A. (eds) Management of Greywater in Developing Countries. Water Science and Technology Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-90269-2_8

Download citation

Publish with us

Policies and ethics