Skip to main content

Disinfection Technologies for Household Greywater

  • Chapter
  • First Online:
Management of Greywater in Developing Countries

Abstract

The treatment technologies for greywater are followed by the disinfection processes in order to achieve safe disposal into the environment. The disinfection technologies aim at reducing or minimising the concentrations of the pathogenic microorganism of greywater which have a high potential risk for humans and plants, and, thus, provide safe and aesthetically acceptable greywater that is appropriate for the purpose of irrigation. The disinfection processes include chemical (chlorination and ozonation), physical or mechanical (filtration process) and radiation disinfection (UV irradiation, solar disinfection (SODIS)). The degree of the disinfection process proposed must take into account the type of reuse and the risk of exposure to the population. In this chapter, the disinfection techniques of greywater are reviewed and discussed based on their efficiency to eliminate the pathogenic bacteria and other toxic by-products. The objective of this chapter was to discuss the advantages and disadvantages of disinfection processes. Among the several disinfectant technologies for greywater, SODIS appears to be the most potent technology which is widely applicable in most of the developing countries experiencing arid and semi-arid atmospheric conditions due to the high density of sunlight which is more effective for inactivating pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Gheethi AA, Norli I, Lalung J, Azieda T, Kadir MOA (2013) Reduction of faecal indicators and elimination of pathogens from sewage treated effluents by heat treatment. Caspian J Appl Sci Res 2(2):29–45

    Google Scholar 

  • Al-Gheethi AA, Ismail N, Efaq AN, Bala JD, Al-Amery RM (2015) Solar disinfection and lime stabilization processes for reduction of pathogenic bacteria in sewage effluents and biosolids for agricultural purposes in Yemen. J Water Reuse Desalin 5(3):419–429

    Article  CAS  Google Scholar 

  • Al-Gheethi AA, Mohamed RM, Efaq AN, Amir HK (2016) Reduction of microbial risk associated with greywater utilized for irrigation. Water health J 14(3):379–398

    Article  CAS  Google Scholar 

  • Bae S, Wuertz S (2009) Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75(9):2940–2944

    Article  CAS  Google Scholar 

  • Banana AAS (2013) Inactivation of pathogenic bacteria in human body fluids by steam autoclave, microwave and supercritical carbon dioxide. Ph.D. thesis, Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Penang, Malaysia

    Google Scholar 

  • Bani-Melhem K, Al-Qodah Z, Al-Shannag M, Qasaimeh A, Qtaishat MR, Alkasrawi M (2015) On the performance of real grey water treatment using a submerged membrane bioreactor system. J. Membrane Sci 476:40–49

    Article  CAS  Google Scholar 

  • Bartelt-Hunt SL, Bartz JC, Saunders SE (2013) Prions in the environment. In: Prions and diseases. Springer, New York, pp 89–101

    Google Scholar 

  • Bedrina B, Macián S, Solís I, Fernández-Lafuente R, Baldrich E, Rodríguez G (2013) Fast immuno sensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials. BMC Microbiol 13(1):88

    Article  Google Scholar 

  • Benami M, Gillor O, Gross A (2015) The question of pathogen quantification in disinfected greywater. Sci Total Environ 506:496–504

    Article  Google Scholar 

  • Bosshard F, Berney M, Scheifele M, Weilenmann HU, Egli T (2009) Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry. Microbiology 155(4):1310–1317

    Article  CAS  Google Scholar 

  • Camacho-Alanis F, Ros A (2015) Protein dielectrophoresis and the link to dielectric properties. Bioanalysis 7(3):353–371

    Article  CAS  Google Scholar 

  • Cantor KP, Hoover R, Hartge P, Mason TJ, Silverman DT, Altman R, Austin DF, Child MA, Key CR, Marrett LD (1987) Bladder cancer, drinking water source and tap water consumption: a case control study. J Nat Cancer Ins 79:1269–1279

    CAS  Google Scholar 

  • Center A, Warrenton V (2007) Report of the experts scientific workshop On critical research needs for the development of new or revised recreational water quality criteria

    Google Scholar 

  • Chang JC, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, Johnson JD (1985) UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol 49(6):1361–1365

    CAS  Google Scholar 

  • Choi JW, Sherr BF, Sherr EB (1999) Dead or alive? A large fraction of ETS-inactive marine bacterioplankton cells, as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquat Microb Ecol 18(9):105–115

    Article  Google Scholar 

  • Chun-ming GONG (2007) Microbial safety control of compost material with cow dung by heat treatment. J Environ Sci 19:1014–1019

    Article  Google Scholar 

  • Ciavola M (2011) Water disinfection in developing countries: design of a new household solar disinfection (SODIS) system. University of Salerno (IT), Tattarillo Award 2011 Appropriate Technologies for sustainable development in any South of the World

    Google Scholar 

  • Davis R, Mauer LJ (2010) Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 2:1582–1594

    Google Scholar 

  • Eisenstark A (1971) Mutagenic and lethal effects of visible and near-ultraviolet light on bacterial cells. Adv Genet 1971(16):167–198

    Google Scholar 

  • Ericsson M, Hanstorp D, Hagberg P, Enger J, Nystrom T (2000) Sorting out bacterial viability with optical tweezers. J Bacteriol 182:5551–5555

    Article  CAS  Google Scholar 

  • Facile N, Barbeau B, Prevost M, Koudjonou B (2000) Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone. Water Res 34(12):3238–3246

    Article  CAS  Google Scholar 

  • Fernandez-Lafuente R (2009) Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Technol 45:405–418

    Article  CAS  Google Scholar 

  • Gameson ALH, Gould JD (1985) Bacterial mortality, Part 2. In: Investigations of sewage discharges to some British coastal waters. WRcTechn. Rep. TR 222. WRc Environment, Medmenham, UK

    Google Scholar 

  • Gilboa Y, Friedler E (2008) UV disinfection of RBC-treated light greywater effluent: kinetics, survival and regrowth of selected microorganisms. Water Res 42(4):1043–1050

    Article  CAS  Google Scholar 

  • Haarhoff J, Cleasby LJ (1991) Biological and physical mechanisms in slow sand filtration. In: Logsdon (ed) Slow sand filtration. ASCE, New York

    Google Scholar 

  • Harding AS, Schwab KJ (2012) Using limes and synthetic psoralens to enhance solar disinfection of water (SODIS): a laboratory evaluation with norovirus, Escherichia coli, and MS2. Am J Trop Med Hyg 86(4):566–572

    Article  Google Scholar 

  • Hossain S (2013) Supercritical carbon dioxide sterilization of clinical solid waste. Ph.D. thesis, Environmental Technology Division, School of Industrial Technology, University Science Malaysia, Penang, Malaysia

    Google Scholar 

  • Hou D, Maheshwari S, Chang HC (2007) Rapid bioparticle concentration and detection by combining a discharge driven vortex with surface enhanced Raman scattering. Biomicrofluidics 1(1):014106

    Article  Google Scholar 

  • Humphreys MJ, Allman R, Lloyd D (1994) Determination of the viability of Trichomonas vaginalis using flow cytometry. Cytometry 15:343–348

    Article  CAS  Google Scholar 

  • Janex ML, Savoye P, Xu P, Rodriguez J, Lazarova V (2000) Ozone for urban wastewater disinfection: a new efficient alternative solution. In: Proceedings of the specialized conference on fundamental and engineering concepts for ozone reactor design, Toulouse, France. International Ozone Association, Stamford, Connecticut, pp 95–98

    Google Scholar 

  • Jernaes MW, Steen HB (1994) Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 17:302–309

    Article  CAS  Google Scholar 

  • Jiang Q, Fu B, Chen Y, Wang Y, Liu H (2013) Quantification of viable but nonculturable bacterial pathogens in anaerobic digested sludge. Appl Microbiol Biotechnol 97(13):6043–6050

    Article  CAS  Google Scholar 

  • Jong J, Lee J, Kim J, Hyun K, Hwang T, Park J, Choung Y (2010) The study of pathogenic microbial communities in greywater using membrane bioreactor. Desalination 250:568–572

    Article  CAS  Google Scholar 

  • Joo JH, Wang SY, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970

    Article  CAS  Google Scholar 

  • Kamihira M, Taniguchi M, Kobayashi T (1987) Sterilization of microorganisms with supercritical and liquid carbon dioxide. Agricul Biol Chem 51:407–412

    Google Scholar 

  • Khalaphallah R, Maroga-Mboula V, Pelaez M, Hequet V, Dionysiou DD, Andres Y (2012) Inactivation of E. coli and P. aeruginosa in greywater by NF-TiO2 photocatalyst under visible light. In: Conference WWPR 2012, Water Reclamation & Reuse, Heraklion, Crete, Greece, 28–30 March

    Google Scholar 

  • Krämer N, Löfström C, Vigre H, Hoorfar J, Bunge C, Malorny B (2011) A novel strategy to obtain quantitative data for modelling: combined enrichment and real-time PCR for enumeration of salmonellae from pig carcasses. Int J Food Microbiol 145:S86–S95

    Article  Google Scholar 

  • Lindgren S, Grette S (1998) Vatten-och avloppssystem. EkoportenNorrköping [Water and sewerage system. Ekoporten in Norrköping]. SABO Utveckling. Trycksak 13303/1998-06.500

    Google Scholar 

  • Machulek Jr A, Moraes JEF, Okano LT, Silverio CA, Quina FH (2009) Photolysis of ferric ion in the presence of sulfate or chloride ions: implications for the photo-Fenton process. Photochem Photobiol Sci 8(2009):985–991

    Article  CAS  Google Scholar 

  • Mohamed H, Brown J, Njee RM, Clasen T, Malebo HM, Mbuligwe S (2015) Point-of-use chlorination of turbid water: results from a field study in Tanzania. J Water Health 13(2):544–552

    Article  Google Scholar 

  • Nissen MD, Sloots TP (2002) Rapid diagnosis in pediatric infectious diseases: the past, the present and the future. Pediatr Infect Dis J 21(6):605–612

    Article  Google Scholar 

  • Noble RT, Weisberg SB (2005) A review of technologies for rapid detection of bacteria in recreational waters. J Water Health 3(4):381–392

    Article  Google Scholar 

  • Noman EA, Rahman NN, Shahadat M, Nagao H, Al-Karkhi AF, Al-Gheethi A, Omar AK (2016) Supercritical fluid CO2 technique for destruction of pathogenic fungal spores in solid clinical wastes. Clean—Soil, Air, Water 44(12):1700–1708

    Article  CAS  Google Scholar 

  • Orlofsky E, Benami M, Gross A, Dutt M, Gillor O (2015) Rapid MPN-Qpcr screening for pathogens in air, soil, water, and agricultural produce. Water Air Soil Pollut 226(9):1

    Article  CAS  Google Scholar 

  • Ottosson J (2003) Hygiene aspects of greywater and greywater reuse. Doctoral dissertation, Mark och vatten. Royal Institute of Technology (KTH), Department of Land and Water Resources. Engineering Swedish Institute for Infectious Disease Control (SMI), Department of Water and Environmental Microbiology

    Google Scholar 

  • Pathmanathan SG, Cardona-Castro N, Sanchez-Jimenez MM, Correa-Ochoa MM, Puthucheary SD, Thong KL (2003) Simple and rapid detection of Salmonella strains by direct PCR amplification of the hilA gene. J Med Microbiol 52(9):773–776

    Article  CAS  Google Scholar 

  • Pehlivanoglu-Mantas E, Elisabeth L, Hawley R, Deeb A, Sedlak DL (2006) Formation of nitrosodimethylamine (NDMA) during chlorine disinfection of wastewater effluents prior to use in irrigation systems. Water Res 40(2):341–347

    Article  CAS  Google Scholar 

  • Poltorak OM, Chukhrai ES, Kozlenkov AA, Chaplin MF, Trevan MD (1999) The putative common mechanism for inactivation of alkaline phosphatase isoenzymes. J Mol Cata B: Enzymatic 7:157–163

    Article  CAS  Google Scholar 

  • Robertson LJ, Smith HV, Ongerth JE (1994) Cryptosporidium and cryptosporidiosis. Part III: development of water treatment technologies to remove and inactivate oocysts. Microbiol Eur(Jan/Feb)

    Google Scholar 

  • Rowe DR, Abdel-Magid IM (1995) Handbook of wastewater reclamation and reuse. CRC Press, CRC Lewis, London

    Google Scholar 

  • Russo P, Botticella G, Capozzi V, Massa S, Spano G, Beneduce L (2014) A fast, reliable, and sensitive method for detection and quantification of Listeria monocytogenes and Escherichia coli O157: H7 in ready-to-eat fresh-cut products by MPN-qPCR. BioMed Res Int

    Google Scholar 

  • Santasmasas C, Rovira M, Clarens F, Valderrama C (2013) Greywater reclamation by decentralized MBR prototype. Res Conser Rec 72:102–107

    Article  Google Scholar 

  • Sciacca F, Rengifo-Herrera J, Wethe J, Pulgarin C (2010) Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella spp. in PET bottles by H2O2 addition on natural water in Burkina Faso containing dissolved iron. Chemosphere 78:1186–1191

    Article  CAS  Google Scholar 

  • Setlow RB (1968) The photochemistry, photobiology, and repair of polynucleotides. Prog Nucleic Acid Res Mol Biol 8:257–295

    Article  CAS  Google Scholar 

  • Shi P, Jia S, Zhang XX, Zhang T, Cheng S, Li A (2013) Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res 45(1):111–120

    Article  Google Scholar 

  • Silbert LE, Liu AJ, Nagel SR (2006) Structural signatures of the unjamming transition at zero temperature. Physical Rev E 73(4):041304

    Article  Google Scholar 

  • Smith WD, Hanawalt CP (1969) Repair of DNA in UV irradiated mycoplasma laidlawii B. J Mol Biol 46(1):57–77

    Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria, mini review. J Bacteriol 194(16):4151–4160

    Article  CAS  Google Scholar 

  • Straškrabová V (1983) The effect of substrate shock on populations of starving aquatic bacteria. J Appl Bacteriol 54:217–224

    Article  Google Scholar 

  • Sugumar G, Mariappan S (2003) Survival of Salmonella sp. in freshwater and seawater microcosms under starvation. Asian Fish Sci 16(3/4):247–256

    Google Scholar 

  • Tal T, Sathasivan A, Bal Krishna KB (2011) Effect of different disinfectants on grey water quality during storage. J Water Sustain 1:127–137

    CAS  Google Scholar 

  • Tanchou V (2014) Review of methods for the rapid identification of pathogens in water samples—ERNCIP Thematic Area Chemical & Biological Risks in the Water Sector Task 7. Publications Office of the European Union

    Google Scholar 

  • Teodoro A, Boncz MÁ, Júnior AM, Paulo PL (2014) Disinfection of greywater pre-treated by constructed wetlands using photo-Fenton: influence of pH on the decay of Pseudomonas aeruginosa. J Environ ChemEng 2(2):958–962

    Article  CAS  Google Scholar 

  • Tripathi S, Pathak V, Tripathi DM, Tripathi BD (2011) Application of ozone based treatments of secondary effluents. J Biores Technol 102(3):2481–2486

    Article  CAS  Google Scholar 

  • USEPA J (2003) Ultraviolet disinfection guidance manual, pp 1–556. EPA-815-D-03-007

    Google Scholar 

  • USEPA (2007) Pathogens, pathogen indicators and indicators of fecal contamination. Airlie Center, Warrenton, Virginiam U.S. Environmental Protection Agency, Office of Water, Office of Research and Development. EPA 823-R-07-006

    Google Scholar 

  • Vital M, Stucki D, Egli T, Hammes F (2010) Evaluating the growth potential of pathogenic bacteria in water. Appl Environ Microbiol 67(19):6477–6484

    Article  Google Scholar 

  • Walker DC, Len SV, Sheehan B (2004) Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water. Appl Environ Microbiol 70:545–2550

    Google Scholar 

  • Weaver L, Michels HT, Keevil CW (2010) Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol 50(1):18–23

    Article  CAS  Google Scholar 

  • Winward GP, Stephenson ALM, Jefferson B (2008) Chlorine disinfection of grey water for reuse: effect of organics and particles. Water Res 42:483–491

    Article  CAS  Google Scholar 

  • World Health Organization (2006) Overview of greywater management health considerations. Regional Office for the Eastern Mediterranean Centre for Environmental Health Activities Amman, Jordan

    Google Scholar 

  • Xu P, Savoye P, Cockx A, Lazarova V (2002) Wastewater disinfection by ozone: main parameters for process design. Water Res 36(4):1043–1055

    Article  CAS  Google Scholar 

  • Yu JC, Yu JG, Ho WK, Jiang ZT, Zhang LZ (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 2002(14):3808–3816

    Article  Google Scholar 

  • Zubair A, Yasir M, Khaliq A, Matsui K, Chung YR (2010) Mini Review: too much bacteria still unculturable. Crop Environ 1:59–60

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Ministry of Higher Education (MOHE) for supporting this research under FRGS vot 1574 and also the Research Management Centre (RMC) UTHM for providing grant IGSP U682 for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Ali Saeed Al-Gheethi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Gheethi, A.A.S., Noman, E.A., Radin Mohamed, R.M.S., Talip, B.A., Mohd Kassim, A.H., Ismail, N. (2019). Disinfection Technologies for Household Greywater. In: Radin Mohamed, R., Al-Gheethi, A., Mohd Kassim, A. (eds) Management of Greywater in Developing Countries. Water Science and Technology Library, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-90269-2_10

Download citation

Publish with us

Policies and ethics